Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In many cities, sewer systems are experiencing conditions that are significantly different from those for which they were designed. Factors such as water conservation efforts, changes in population, and efforts to reduce infiltration are altering the quantity and quality of sewage. These changes may affect the ability of sewers to maintain self-cleansing velocities, which are crucial to avoiding solids settling and corrosion issues. Further, such changes may alter the timeline for expected wastewater plant expansion. The present work proposes a method for predicting average annual dry weather wastewater flow, as well as pollutant load and concentration over time. The method takes into account potential declines in per person wastewater production due to water conservation and reuse practices, as well as other potential changes such as shifts in population, transformations in industrial wastewater production, and variations in dry weather infiltration. Results show that the amount of dry weather infiltration will play a large role in whether or not conservation will affect self-cleansing velocities or plant expansions. Conservation is most beneficial to systems with high levels of dry weather infiltration since plant expansion could be avoided; and most detrimental to systems with low levels of infiltration since low flow conditions could lead to settling and corrosion in the sewer. Furthermore, the rate of implementation of conservation efforts influences when impacts to the system would occur. Utility planners will be able to use this method to predict treatment plant upgrade and expansion needs more accurately as well as to assess the relative value of utility-based maintenance activities and conservation practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2017.10.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!