DNA damage and neurodegenerative phenotypes in aged Ciz1 null mice.

Neurobiol Aging

Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA. Electronic address:

Published: February 2018

Cell-cycle dysfunction and faulty DNA repair are closely intertwined pathobiological processes that may contribute to several neurodegenerative disorders. CDKN1A interacting zinc finger protein 1 (CIZ1) plays a critical role in DNA replication and cell-cycle progression at the G1/S checkpoint. Germline or somatic variants in CIZ1 have been linked to several neural and extra-neural diseases. Recently, we showed that germline knockout of Ciz1 is associated with motor and hematological abnormalities in young adult mice. However, the effects of CIZ1 deficiency in much older mice may be more relevant to understanding age-related declines in cognitive and motor functioning and age-related neurologic disorders such as isolated dystonia and Alzheimer disease. Mouse embryonic fibroblasts from Ciz1 mice showed abnormal sensitivity to the effects of γ-irradiation with persistent DNA breaks, aberrant cell-cycle progression, and apoptosis. Aged (18-month-old) Ciz1 mice exhibited marked deficits in motor and cognitive functioning, and, in brain tissues, overt DNA damage, NF-κB upregulation, oxidative stress, vascular dysfunction, inflammation, and cell death. These findings indicate that the deleterious effects of CIZ1 deficiency become more pronounced with aging and suggest that defects of cell-cycle control and associated DNA repair pathways in postmitotic neurons could contribute to global neurologic decline in elderly human populations. Accordingly, the G1/S cell-cycle checkpoint and associated DNA repair pathways may be targets for the prevention and treatment of age-related neurodegenerative processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877805PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2017.10.014DOI Listing

Publication Analysis

Top Keywords

dna repair
12
dna damage
8
ciz1
8
cell-cycle progression
8
effects ciz1
8
ciz1 deficiency
8
ciz1 mice
8
associated dna
8
repair pathways
8
dna
7

Similar Publications

Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.

Methods And Results: In this study, we employed a discovery-driven, unbiased approach.

View Article and Find Full Text PDF

Esophageal adenocarcinoma (EAC) is an aggressive cancer characterized by a high risk of relapse post-surgery. Current follow-up methods (serum carcinoembryonic antigen detection and PET-CT) lack sensitivity and reliability, necessitating a novel approach. Analyzing cell-free DNA (cfDNA) from blood plasma emerges as a promising avenue.

View Article and Find Full Text PDF

Successful transmission of Plasmodium falciparum from one person to another relies on the complete intraerythrocytic development of non-pathogenic sexual gametocytes infectious for anopheline mosquitoes. Understanding the genetic factors that regulate gametocyte development is vital for identifying transmission-blocking targets in the malaria parasite life cycle. Toward this end, we conducted a forward genetic study to characterize the development of gametocytes from sexual commitment to mature stage V.

View Article and Find Full Text PDF

Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.

View Article and Find Full Text PDF

Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!