A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Serine 347 Phosphorylation by JNKs Negatively Regulates OCT4 Protein Stability in Mouse Embryonic Stem Cells. | LitMetric

The POU transcription factor OCT4 is critical for maintaining the undifferentiated state of embryonic stem cells (ESCs) and generating induced pluripotent stem cells (iPSCs), but its precise mechanisms of action remain poorly understood. Here, we investigated the role of OCT4 phosphorylation in the biological functions of ESCs. We observed that c-Jun N-terminal kinases (JNKs) directly interacted with and phosphorylated OCT4 at serine 347, which inhibited the transcriptional activity of OCT4. Moreover, phosphorylation of OCT4 induced binding of FBXW8, which reduced OCT4 protein stability and enhanced its proteasomal degradation. We also found that the mutant OCT4 (S347A) might delay the differentiation process of mouse ESCs and enhance the efficiency of generating iPSCs. These results demonstrated that OCT4 phosphorylation on serine 347 by JNKs plays an important role in its stability, transcriptional activities, and self-renewal of mouse ESCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785688PMC
http://dx.doi.org/10.1016/j.stemcr.2017.10.017DOI Listing

Publication Analysis

Top Keywords

serine 347
12
stem cells
12
oct4 phosphorylation
12
oct4
9
oct4 protein
8
protein stability
8
embryonic stem
8
mouse escs
8
phosphorylation
4
347 phosphorylation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!