We report results of the studies relating to fabrication of nanostructured metal oxide (NMO) based cancer biosensor. With the help of 2D electroactive reduced graphene oxide (RGO), we successfully inhibited the Brownian motion of NMO that led to reduced agglomeration of NMO. The nanostructured hafnium oxide (nHfO) was used as a model NMO. The reduced agglomeration of nHfO was achieved through controlled hydrothermal synthesis and investigated via nanoparticles tracking analysis (NTA). X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM) techniques were used for phase identification as well as morphological analysis of the synthesized nanohybrid (nHfO@RGO) material. The 3-aminopropyl triethoxysilane (APTES) was used for the functionalization of nHfO@RGO and electrophoretic deposition (EPD) technique was used for its deposition onto ITO coated glass electrode. Further, antibodies of cancer biomarker (anti-CYFRA-21-1) were immobilized via EDC-NHS chemistry and Bovine serum albumin (BSA) was used for blocking of the non-specific binding sites. The electrochemical response studies of fabricated immunoelectrode (BSA/anti-CYFRA-21-1/APTES/nHfO@RGO/ITO) revealed higher sensitivity (18.24µAmLng), wide linear detection range (0 to 30ngmL), with remarkable lower detection limit (0.16ngmL). The obtained results showed good agreement with the concentration of CYFRA-21-1 obtained through enzyme linked immunosorbent assay (ELISA) in saliva samples of oral cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2017.11.004DOI Listing

Publication Analysis

Top Keywords

reduced agglomeration
12
brownian motion
8
nanostructured metal
8
metal oxide
8
cancer biosensor
8
reduced
4
motion reduced
4
agglomeration nanostructured
4
oxide
4
oxide development
4

Similar Publications

As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.

View Article and Find Full Text PDF

With the projected expansion of the general aviation sector and recent breakthroughs in sustainable aviation fuels (SAF), accurately measuring emissions from novel aircraft engines powered by SAF is paramount for evaluating the role of aviation industry in emission reduction trends and environmental consequences. Current SAF research primarily centers on low blend ratios, neglecting data on 100% SAF. This study bridges this gap by experimentally determining emissions indices for gaseous pollutants (CO, CO, HC, NOx), total particulate matter (PM) counts and sizes, and non-volatile particulate matter (nvPM) number and mass concentrations from a heavy-fuel aircraft piston engines (HF-APE) using hydroprocessed esters and fatty acids-derived SAF (HEFA-SAF), adhering to airworthiness-standard sampling and measurement protocols.

View Article and Find Full Text PDF

Study on Refined Crushing Technology of RAP and Mechanical Properties of RAP-Doped Cement-Stabilised Macadam Base.

Materials (Basel)

January 2025

Gansu Industry Technology Center of Transportation Construction Materials Research and Application, Lanzhou Jiaotong University, Lanzhou 730070, China.

In order to study the effect of the crushing process on the fine separation of reclaimed asphalt pavement (RAP) and the mechanical properties of cement-stabilised aggregate mixed with RAP, four crushing processes, namely small mesh hammer crushing, hammer crushing, jaw crushing, and double roller crushing, were used to separate the aggregate from asphalt in RAP materials. The effect of crushing on the grading characteristics and agglomeration condition of RAP material was investigated. RAP cement-stabilised aggregates were prepared and analysed for their mechanical properties and micro-morphology using RAP materials obtained from fine separation.

View Article and Find Full Text PDF

Enhancing Mechanical and Antibacterial Performance of Tire Waste/Epoxidized Natural Rubber Blends Using Modified Zinc Oxide-Silica.

Polymers (Basel)

January 2025

Sustainable Polymer & Innovative Composite Materials Research Group, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

This study investigates the synergistic effects of incorporating modified zinc oxide-silica (ZnO-SiO) into tire waste (TW) and epoxidized natural rubber (ENR) blends, with a focus on crosslinking dynamics, mechanical reinforcement, and antibacterial activity. The addition of ZnO-SiO significantly enhanced crosslink density, as evidenced by increased torque and accelerated cure rates. An optimal concentration of 10 phr was found to yield the highest performance.

View Article and Find Full Text PDF

The efficient recovery of fine argentite from polymetallic lead-zinc (Pb-Zn) sulfide ore is challenging. This study investigated nanobubble (NB) adsorption on the argentite surface and its role in enhancing fine argentite flotation using various analytical techniques, including contact angle measurements, adsorption capacity analysis, infrared spectroscopy, zeta potential measurements, turbidity tests, microscopic imaging, scanning electron microscopy, and flotation experiments. Results indicated that the NBs exhibited long-term stability and were adsorbed onto the argentite surface, thereby enhancing surface hydrophobicity, reducing electrostatic repulsion between fine argentite particles, and promoting particle agglomeration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!