A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TDP-43 proteolysis is associated with astrocyte reactivity after traumatic brain injury in rodents. | LitMetric

TDP-43 proteolysis is associated with astrocyte reactivity after traumatic brain injury in rodents.

J Neuroimmunol

School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan; Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan. Electronic address:

Published: December 2017

The aggregation and deposition of transactivation response DNA-binding protein 43 (TDP-43) in neurons and astrocytes is characteristic in a number of neurodegenerative diseases including Alzheimer's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. Nevertheless, the exact role of TDP-43 in astrocytes is unknown. Recently, TDP-43 was identified in neurons but not astrocytes after traumatic brain injury (TBI) in humans. In the present study, we evaluated TDP-43 expression and proteolysis in astrocytes in a rat model of TBI. We assessed TDP-43 fragment expression, astrocyte morphology, neuronal population numbers, and motor function after TBI with or without intracerebroventricular administration of a caspase-3 inhibitor. Motor dysfunction was observed after TBI in potential association astrocytic TDP-43 short fragment mislocalization and accumulation, astrogliosis, and neuronal loss. Notably, caspase-3 inhibition prevented these changes after TBI. Our findings suggest that TDP-43 proteolysis in astrocytes is related to astrogliosis and subsequent neuronal loss in TBI, and that TDP-43 may be an important therapeutic target for preventing motor dysfunction after TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2017.10.011DOI Listing

Publication Analysis

Top Keywords

tdp-43
9
tdp-43 proteolysis
8
traumatic brain
8
brain injury
8
neurons astrocytes
8
proteolysis astrocytes
8
motor dysfunction
8
neuronal loss
8
tbi
7
astrocytes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!