Whole Root Transcriptomic Analysis Suggests a Role for Auxin Pathways in Resistance to Ralstonia solanacearum in Tomato.

Mol Plant Microbe Interact

Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907, U.S.A.

Published: April 2018

The soilborne pathogen Ralstonia solanacearum is the causal agent of bacterial wilt and causes significant crop loss in the Solanaceae family. The pathogen first infects roots, which are a critical source of resistance in tomato (Solanum lycopersicum L.). Roots of both resistant and susceptible plants are colonized by the pathogen, yet rootstocks can provide significant levels of resistance. Currently, mechanisms of this 'root-mediated resistance' remain largely unknown. To identify the molecular basis of this resistance, we analyzed the genome-wide transcriptional response of roots of resistant 'Hawaii 7996' and susceptible 'West Virginia 700' (WV) tomatoes at multiple timepoints after inoculation with R. solanacearum. We found that defense pathways in roots of the resistant Hawaii 7996 are activated earlier and more strongly than roots of susceptible WV. Further, auxin signaling and transport pathways are suppressed in roots of the resistant variety. Functional analysis of an auxin transport mutant in tomato revealed a role for auxin pathways in bacterial wilt. Together, our results suggest that roots mediate resistance to R. solanacearum through genome-wide transcriptomic changes that result in strong activation of defense genes and alteration of auxin pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-08-17-0209-RDOI Listing

Publication Analysis

Top Keywords

roots resistant
16
auxin pathways
12
role auxin
8
ralstonia solanacearum
8
bacterial wilt
8
roots
7
auxin
5
pathways
5
resistance
5
root transcriptomic
4

Similar Publications

sly-miR408b Targets a Plastocyanin-Like Protein to Regulate Mycorrhizal Symbiosis in Tomato.

Plant Cell Environ

January 2025

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.

Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.

View Article and Find Full Text PDF

Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.

View Article and Find Full Text PDF

Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.

Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.

View Article and Find Full Text PDF

Colonization of Serendipita indica enhances resistance against Phoma arachidicola in Arachis hypogaea L.

World J Microbiol Biotechnol

January 2025

The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.

The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S.

View Article and Find Full Text PDF

Xanthomonas oryzae pv. oryzae (Xoo) is a bacterial pathogen responsible for bacterial leaf blight (BLB) in rice, which can result in significant yield losses of up to 70%. A study evaluated the spread of Xoo in rice fields using environmental samples and employed colorimetric loop-mediated amplification (cLAMP) and PCR for detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!