The synthesis of novel zinc electrodes has been successfully implemented by using the electroplating method with the aid of inorganic additives in the electroplating solution. The selected inorganic additives are indium sulfate, tin oxide, and boric acid. From X-ray diffraction results, these synthesized zinc electrodes prefer (002) and/or (103) crystallographic orientations, representing basal morphology and high resistance to dendrite growth. The corrosion rates of these electroplated zinc samples decrease as much as 11 times smaller than the corrosion rate on zinc foil when the zinc materials are in contact with the aqueous electrolyte of a rechargeable hybrid aqueous battery (ReHAB). The ReHABs employing these anodes exhibit up to a threefold decrease in float charge current density after a seven-day constant-voltage charging at 2.1 V versus Zn /Zn. Furthermore, the capacity retention is up to 15 % higher than the performance of battery containing commercial Zn after 1000 cycles of charge-discharge. The significant advancements are attributed to the careful preparation of the anode, which contains appropriate crystallographic orientation and morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201704440 | DOI Listing |
Gels
December 2024
School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou 510303, China.
Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).
View Article and Find Full Text PDFWhile zinc-ion and hybrid aqueous battery systems have emerged as potential substitutes for expensive lithium-ion batteries, issues like side reactions, limited electrochemical stability, and electrolyte leakage hinder their commercialization. Due to their low cost, high stability, minimal leakage risks, and a wide variety of modification opportunities, hydrogel electrolytes are considered the most promising solution compared to liquid or solid electrolytes. Here, we synthesized a dual-function hydrogel electrolyte based on polyacrylamide and poly(ethylene dioxythiophene):polystyrene (PPP).
View Article and Find Full Text PDFSci Bull (Beijing)
November 2024
Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. Electronic address:
The challenges posed by the non-conductive nature of iodine, coupled with the easy formation of soluble polyiodides in water, impede its integration with zinc for the development of advanced rechargeable batteries. Here we demonstrate the in-situ loading of molybdenum carbide nanoclusters (MoC) and zinc single atoms (Zn-SA) into porous carbon fibers to invoke electrocatalytic conversion of iodine at the interface. The electronic interactions between MoC and Zn-SA lead to an upshift in the d-band center of Mo relative to the Fermi level, thus promoting the interfacial interactions with iodine species to suppress shuttle effects.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand.
Thermally conductive composites were prepared based on epoxidized natural rubber (ENR) filled with alumina, silica, and hybrid alumina and silica. The thermal conductivity and mechanical properties were assessed. It was observed that the interactions of polar functional groups in the fillers and epoxy group in ENR supported a fine dispersion of filler in the ENR matrix.
View Article and Find Full Text PDFHeliyon
October 2024
Computer Engineering Department, Faculty of Engineering, Mersin University, P.O. Box 33100, Mersin, Turkey.
In rechargeable battery control and operation, one of the primary obstacles is safety concerns where the battery degradation poses a significant factor. Therefore, in recent years, state-of-health assessment of lithium-ion batteries has become a noteworthy issue. On the other hand, it is challenging to ensure robustness and generalization because most state-of-health assessment techniques are implemented for a specific characteristic, operating situation, and battery material system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!