RNA-Seq Analysis of Antibiotic-Producing Bacillus subtilis SC-8 Reveals a Role for Small Peptides in Controlling PapR Signaling.

Appl Biochem Biotechnol

Department of Systems Biotechnology, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.

Published: June 2018

Bacillus subtilis SC-8 (BSSC8) shows a narrow antimicrobial activity against the Bacillus cereus group. Previously, B. cereus-derived PapR as a signal peptide to stimulate PlcR, which plays a significant role in regulating the transcription of virulence factors, was assumed to stimulate antibiotic production in BSSC8. To better understand the functional role of PapR in the antibiotic production of BSSC8 and the interspecies interaction, the global transcriptomic profiling of BSSC8 was investigated using RNA-Seq in this study. Small peptides derived from B. cereus wild type (WTBC) and a papR-deleted mutant strain (MTBC) were individually supplied to BSSC8 cultures, and changes in global transcription levels were compared by RNA-Seq. In the presence of WTBC small peptides, more genes (80.9%) were significantly upregulated than in cells exposed to MTBC small peptides. Specifically, 48.8 and 83.4% of genes involved in glycolysis and the TCA cycle, respectively, showed changes in transcription levels in response to small peptides from both strains. Of the genes showing the alterations, 35.0% (glycolysis) and 60.0% (TCA cycle) of transcripts were significantly regulated only in response to WTBC-derived small peptides. Furthermore, the expression of biosynthetic genes encoding several known antibiotics in BSSC8 was further decreased in response to WTBC small peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-017-2653-7DOI Listing

Publication Analysis

Top Keywords

small peptides
28
bacillus subtilis
8
subtilis sc-8
8
antibiotic production
8
production bssc8
8
transcription levels
8
wtbc small
8
tca cycle
8
small
7
peptides
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!