The tick Rhipicephalus microplus affects cattle health, with production loss in tropical and subtropical regions. Moreover, the use of commercial acaricides has been reduced due to the resistance of this parasite. Although alternatives such as plant bioactive molecules have been sought, essential oils present variations in their chemical constituents due to environmental factors, which can interfere with their acaricidal activity. The objective of the present study was to evaluate the seasonal influence of the essential oil of Ocimum gratissimum and its major constituents on acaricidal activity against R. microplus larvae. A high-yield essential oil of O. gratissimum and its major constituents were used, and a plant with a thymol-type oil was selected for seasonal analysis and acaricidal activity against R. microplus. Gas chromatography (GC) and GC-mass spectrometry (MS) were employed to identify 31 oil constituents (average yield of 6.26%). The main compounds were found to be thymol (33.4 to 47.9%), γ-terpinene (26.2 to 36.8%), and p-cymene (4.3 to 17.0%). Concerning acaricidal activity, the December (LC 0.84 mg/mL) and September (LC 1.58 mg/mL) oils obtained in the dry season were the most active, and assays performed with commercial standards revealed LC values of p-cymene, thymol, and γ-terpinene of 1.41, 1.81, and 3.08 mg/mL, respectively. Overall, lower acaricidal activities were found for oils produced from plants harvested in the rainy season. The results showed that seasonal variation in the chemical composition of the O. gratissimum essential oil influences its acaricidal activity. The seasonal variations in the thymol-type essential oil of O. gratissimum can represent an important strategy for the control of R. microplus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-017-5662-0DOI Listing

Publication Analysis

Top Keywords

acaricidal activity
24
essential oil
20
gratissimum major
12
major constituents
12
seasonal analysis
8
analysis acaricidal
8
thymol-type essential
8
oil ocimum
8
ocimum gratissimum
8
rhipicephalus microplus
8

Similar Publications

Recently, the structural optimization of natural bioactive products has been one of the important ways to discover new pesticide candidates. Based on osthole as a lead compound, herein, a series of new 2-isopropanol-4-methoxy-7-alkyl/aryloxycarbonyl-()-vinyl-2,3-dihydrobenzofuran derivatives were synthesized. Steric configurations of compounds , , , , , , and were confirmed by X-ray monocrystallography.

View Article and Find Full Text PDF

Broad-spectrum crop protection technologies, such as abamectin and bifenthrin, are globally relied upon to curb the existential threats from economic crop pests such as the generalist herbivore Koch (TSSM). However, the rising cost of discovering and registering new acaricides, particularly for specialty crops, along with the increasing risk of pesticide resistance development, underscores the urgent need to preserve the efficacy of currently registered acaricides. This study examined the overall genetic mechanism underlying adaptation to abamectin and bifenthrin in populations from commercial hop fields in the Pacific Northwestern region of the USA.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the harmful effects of the pesticide etoxazole on the plant Allium cepa (onion) and explores the protective role of Achillea millefolium (yarrow) extract against this toxicity.
  • The research showed that etoxazole exposure significantly reduced growth metrics (like rooting percentage and root length) and increased harmful cellular changes, including chromosomal abnormalities.
  • Molecular docking results indicated that etoxazole directly interacts with DNA and key proteins, while A. millefolium extract, rich in phenolic compounds, may mitigate some of the toxic effects caused by the pesticide.
View Article and Find Full Text PDF

Etoxazole, a widely used mite growth inhibitor, contains a chiral center in its chemical structure, resulting in two mirror-image enantiomers. These enantiomers of etoxazole display significant differences in biological activity and environmental behavior. In bioassays conducted against , it was observed that S-etoxazole demonstrated approximately 279.

View Article and Find Full Text PDF

Assessing trends in ectoparasiticidal drugs used to control ticks and flies in farm animals: A four-year analysis reveal differences between epidemiological zones at country level in Uruguay.

Prev Vet Med

December 2024

Unidad de Farmacología y Terapéutica, Departamento Hospital y Clínicas Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay, Ruta 8 km. 16, Montevideo, Uruguay. Electronic address:

The use of ectoparasiticides is a major concern in the control of parasites. In this study, we examined the trends and patterns of veterinary medicines use comparing between a high-risk epidemiological zone (HRZ) and a low-risk epidemiological zone (LRZ) for ectoparasites over a four-year period (2017-2020) at country level data. The objective of this study was to analyze the patterns of ectoparasiticide use in Uruguayan cattle, using the Anatomical Therapeutic Chemical Classification System for Veterinary Drugs (ATCvet) and dose indicators to consider regional variations in the animal population and production intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!