A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of astrocytic calcium and TRPV4 channels in neurovascular coupling. | LitMetric

The role of astrocytic calcium and TRPV4 channels in neurovascular coupling.

J Comput Neurosci

High Performance Computing Centre, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch, 8041, New Zealand.

Published: February 2018

Neuronal activity evokes a localised change in cerebral blood flow in a response known as neurovascular coupling (NVC). Although NVC has been widely studied the exact mechanisms that mediate this response remain unclear; in particular the role of astrocytic calcium is controversial. Mathematical modelling can be a useful tool for investigating the contribution of various signalling pathways towards NVC and for analysing the underlying cellular mechanisms. The lumped parameter model of a neurovascular unit with both potassium and nitric oxide (NO) signalling pathways and comprised of neurons, astrocytes, and vascular cells has been extended to include the glutamate induced astrocytic calcium pathway with epoxyeicosatrienoic acid (EET) signalling and the stretch dependent TRPV4 calcium channel on the astrocytic endfoot. Results show that the potassium pathway governs the fast onset of vasodilation while the NO pathway has a delayed response, maintaining dilation longer following neuronal stimulation. Increases in astrocytic calcium concentration via the calcium signalling pathway and/or TRPV4 channel to levels consistent with experimental data are insufficient for inducing either vasodilation or constriction, in contrast to a number of experimental results. It is shown that the astrocyte must depolarise in order to produce a significant potassium flux through the astrocytic BK channel. However astrocytic calcium is shown to strengthen potassium induced NVC by opening the BK channel further, consequently allowing more potassium into the perivascular space. The overall effect is vasodilation with a higher maximal vessel radius.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-017-0671-7DOI Listing

Publication Analysis

Top Keywords

astrocytic calcium
20
role astrocytic
8
neurovascular coupling
8
signalling pathways
8
channel astrocytic
8
calcium
7
astrocytic
6
potassium
5
calcium trpv4
4
trpv4 channels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!