A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nephrin loss is reduced by grape seed proanthocyanidins in the experimental diabetic nephropathy rat model. | LitMetric

Diabetic nephropathy (DN) is one of the major causes of end‑stage renal failure. Grape seed proanthocyanidin extracts (GSPE) are known to act as antioxidants. The current study aimed to determine the effects of GSPE on the streptozotocin (STZ)‑induced diabetic rat model and to explore the underlying mechanism of its action. Wistar rats were induced into a diabetic state by injection of STZ and were treated with 250 mg·kg‑1·day‑1 GSPE for 24 weeks. Kidney samples were collected for observation of renal pathological changes by light microscope (periodic acid‑Schiff staining) and electron microscopy. Reverse transcription‑polymerase chain reaction, western blotting, and immunohistochemical staining were used to detect the mRNA and protein expression of the receptor for advanced glycation end‑products (RAGE), nephrin and podocin. The results indicated that diabetic rats treated with GSPE had markedly reduced Ccr, urinary albumin excretion, ratio of kidney weight to body weight, AGEs and ECM accumulation (P<0.01) compared with that in the diabetic rats. GSPE treatment can also reverse the renal pathological damage in diabetic rats. Further results indicated that GSPE treatment significantly decreased the RAGE expression level (P<0.01), and significantly increased the expression level of nephrin in the kidney and glomeruli of diabetic rats (P<0.01). However, no significant differences were identified in the expression of podocin following GSPE treatment (P>0.05). In conclusion, the results demonstrated that GSPE exerts a reno‑protective effect by decreasing urinary albumin excretion and reversing renal pathological damage in diabetic rats. The underlying mechanism of GSPE activity is associated with the decreased expression of the AGEs/RAGE axis and the increased expression of nephrin in diabetic rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779996PMC
http://dx.doi.org/10.3892/mmr.2017.7837DOI Listing

Publication Analysis

Top Keywords

grape seed
8
diabetic nephropathy
8
rat model
8
diabetic
5
nephrin loss
4
loss reduced
4
reduced grape
4
seed proanthocyanidins
4
proanthocyanidins experimental
4
experimental diabetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!