Resource partitioning is an important process driving habitat use and foraging strategies in sympatric species that potentially compete. Differences in foraging behavior are hypothesized to contribute to species coexistence by facilitating resource partitioning, but little is known on the multiple mechanisms for partitioning that may occur simultaneously. Studies are further limited in the marine environment, where the spatial and temporal distribution of resources is highly dynamic and subsequently difficult to quantify. We investigated potential pathways by which foraging behavior may facilitate resource partitioning in two of the largest co-occurring and closely related species on Earth, blue () and humpback () whales. We integrated multiple long-term datasets (line-transect surveys, whale-watching records, net sampling, stable isotope analysis, and remote-sensing of oceanographic parameters) to compare the diet, phenology, and distribution of the two species during their foraging periods in the highly productive waters of Monterey Bay, California, USA within the California Current Ecosystem. Our long-term study reveals that blue and humpback whales likely facilitate sympatry by partitioning their foraging along three axes: trophic, temporal, and spatial. Blue whales were specialists foraging on krill, predictably targeting a seasonal peak in krill abundance, were present in the bay for an average of 4.7 months, and were spatially restricted at the continental shelf break. In contrast, humpback whales were generalists apparently feeding on a mixed diet of krill and fishes depending on relative abundances, were present in the bay for a more extended period (average of 6.6 months), and had a broader spatial distribution at the shelf break and inshore. Ultimately, competition for common resources can lead to behavioral, morphological, and physiological character displacement between sympatric species. Understanding the mechanisms for species coexistence is both fundamental to maintaining biodiverse ecosystems, and provides insight into the evolutionary drivers of morphological differences in closely related species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677487 | PMC |
http://dx.doi.org/10.1002/ece3.3409 | DOI Listing |
J Nat Prod
January 2025
Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States.
To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials.
View Article and Find Full Text PDFCattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).
View Article and Find Full Text PDFWater Res X
May 2025
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Intelligent Vehicle Safety Technology, Chongqing 401133, China.
With the advancement of federated learning (FL), there is a growing demand for schemes that support multi-task learning on multi-modal data while ensuring robust privacy protection, especially in applications like intelligent connected vehicles. Traditional FL schemes often struggle with the complexities introduced by multi-modal data and diverse task requirements, such as increased communication overhead and computational burdens. In this paper, we propose a novel privacy-preserving scheme for multi-task federated split learning across multi-modal data (MTFSLaMM).
View Article and Find Full Text PDFEnviron Res
January 2025
MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China.
The occurrence of heavy metals is important for understanding their behavior in the sediments of river-salt lake ecosystems due to dramatically changes in salinity and flow velocity at the confluence area. Sediments and surface water samples were collected from the Golmud River-Dabson Salt Lake ecosystem, northwest China, to investigate the spatial distribution, sediment-water partitioning, risk assessment and source apportionment of heavy metals. Higher concentrations of heavy metals were observed in surface water from Dabson Salt Lake than in other regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!