Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chibby 1 (CBY1) is a small and evolutionarily conserved protein, which act as β-catenin antagonist. CBY1 is encoded by (22q13.1) Its antagonistic function on β-catenin involves the direct interaction with: The C-terminal activation domain of β-catenin, which hinders β-catenin binding with Tcf/Lef transcription factors hence repressing β-catenin transcriptional activation. 14-3-3 scaffolding proteins (σ or ξ), which drive CBY1 nuclear export into a stable tripartite complex with β-catenin. The relative proximity of gene encoding for CBY1 to the BCR breakpoint on chromosome 22q11, whose translocation and rearrangement with the c-ABL is the causative event of chronic myeloid leukemia (CML), suggested that gene haploinsufficiency may play a role in the disease pathogenesis and progression. We found CBY1 down-modulation associated with the , promoted by transcriptional mechanisms (promoter hyper-methylation) and post-transcriptional events, addressing the protein towards proteasome-dependent degradation through SUMOylation. CBY1 reduced expression in clonal progenitors and, more importantly, in leukemic stem cells (LSC), is contingent upon the tyrosine kinase (TK) activity of BCR-ABL1 fusion protein. Accordingly, its induction by Imatinib (IM) and second generation TK inhibitors contributes to β-catenin inactivation through multiple events encompassing the activation of endoplasmic reticulum (ER) stress-associated unfolded protein response (UPR) and autophagy, eventually leading to apoptotic death. These findings support the advantage of combined regimens including drugs targeting DNA epigenetics and/or proteasome to eradicate the BCR-ABL1+ hematopoiesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675707 | PMC |
http://dx.doi.org/10.18632/oncotarget.21166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!