High expression levels at acute myeloid leukemia diagnosis have been linked to adverse outcomes. Recent data indicate that high expression levels may also be used as marker for residual disease following acute myeloid leukemia treatment. Allogeneic hematopoietic stem cell transplantation (HSCT) offers a curative treatment for acute myeloid leukemia patients. However, disease recurrence remains a major clinical challenge and identification of high-risk patients prior to HSCT is crucial to improve outcomes. We performed absolute quantification of copy numbers in peripheral blood prior (median 7 days) to HSCT in complete remission (CR) or CR with incomplete peripheral recovery in 82 acute myeloid leukemia patients using digital droplet PCR (ddPCR) technology. An optimal cut-off of 0.14 / copy numbers was determined and applied to define patients with high or low / copy numbers. High pre-HSCT / copy numbers significantly associated with higher cumulative incidence of relapse and shorter overall survival in univariable and multivariable models. Patients with high pre-HSCT / copy numbers were more likely to experience relapse within 100 days after HSCT. Evaluation of pre-HSCT / copy numbers in peripheral blood by ddPCR represents a feasible and rapid way to identify acute myeloid leukemia patients at high risk of early relapse after HSCT. The prognostic impact was also observed independently of other known clinical, genetic, and molecular prognosticators. In the future, prospective studies should evaluate whether acute myeloid leukemia patients with high pre-HSCT / copy numbers benefit from additional treatment before or early intervention after HSCT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675684 | PMC |
http://dx.doi.org/10.18632/oncotarget.21322 | DOI Listing |
LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1.
View Article and Find Full Text PDFThe shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.
View Article and Find Full Text PDFCopy number variants (CNVs) are prevalent in both diploid and haploid genomes, with the latter containing a single copy of each gene. Studying CNVs in genomes from single or few cells is significantly advancing our knowledge in human disorders and disease susceptibility. Low-input including low-cell and single-cell sequencing data for haploid and diploid organisms generally displays shallow and highly non-uniform read counts resulting from the whole genome amplification steps that introduce amplification biases.
View Article and Find Full Text PDFApolipoprotein E4 (APOE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). Individuals with one copy of APOE4 exhibit greater amyloid-beta (Aβ) deposition compared to noncarriers, an effect that is even more pronounced in APOE4 homozygotes. Interestingly, APOE4 carriers not only show more AD pathology but also experience more rapid cognitive decline, particularly in episodic memory.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Computer Science, University of Victoria, Victoria, BC, Canada.
Introduction: Accurate genotyping of Killer cell Immunoglobulin-like Receptor (KIR) genes plays a pivotal role in enhancing our understanding of innate immune responses, disease correlations, and the advancement of personalized medicine. However, due to the high variability of the KIR region and high level of sequence similarity among different KIR genes, the generic genotyping workflows are unable to accurately infer copy numbers and complete genotypes of individual KIR genes from next-generation sequencing data. Thus, specialized genotyping tools are needed to genotype this complex region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!