We examine the effect of physiological cations Na, K, Mg, and Ca on the mechanical properties of bundles of λ-phage DNA using silicon nanotweezers (SNTs). Integrating SNTs with a microfluidic device allows us to perform titration experiments while measuring the effect in real-time. The results show that only for Mg and in particular, at the intra-nuclear concentration (100 mM), the interaction occurs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659861PMC
http://dx.doi.org/10.1063/1.5008622DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
direct measurement
4
measurement mechanism
4
mechanism magnesium
4
magnesium modifies
4
modifies mechanical
4
properties dna
4
dna examine
4
examine physiological
4
physiological cations
4

Similar Publications

Aneurysm dome and vessel pressure measurements with coiling, stent assisted coiling and flow diversion.

Acta Neurochir (Wien)

January 2025

Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street , Boston, MA, 02215, USA.

Background: Variability in long-term endovascular treatment outcomes for intracranial aneurysms has prompted questions regarding the effects of these treatments on aneurysm hemodynamics. Endovascular techniques disrupt aneurysmal blood flow and shear, but their influence on intra-aneurysmal pressure remains unclear. A better understanding of aneurysm pressure effects may aid in predicting outcomes and guiding treatment decisions.

View Article and Find Full Text PDF

Swin UNETR Segmentation with Automated Geometry Filtering for Biomechanical Modeling of Knee Joint Cartilage.

Ann Biomed Eng

January 2025

Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, CCIT216, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.

Purpose: Simulation studies, such as finite element (FE) modeling, offer insights into knee joint biomechanics, which may not be achieved through experimental methods without direct involvement of patients. While generic FE models have been used to predict tissue biomechanics, they overlook variations in population-specific geometry, loading, and material properties. In contrast, subject-specific models account for these factors, delivering enhanced predictive precision but requiring significant effort and time for development.

View Article and Find Full Text PDF

The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.

View Article and Find Full Text PDF

In the previous study, discarded oyster farming bamboo scaffolding (BS) demonstrated the potential for application in pulping and papermaking through the soda pulping process. However, soda pulping involves high temperatures and chemical dosages. Therefore, this study develops an alternative pulping process to lower temperature and chemical demands by utilizing a high-consistency kneader (HCK), simultaneously promoting the utilization of BS in pulping and papermaking.

View Article and Find Full Text PDF

Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!