Enhancing the fluxes in gas separation membranes is required for utilizing the membranes on a mass scale for CO capture. Membrane thinning is one of the most promising approaches to achieve high fluxes. In addition, sophisticated molecular transport across membranes can boost gas separation performance. In this review, we attempt to summarize the current state of CO separation membranes, especially from the viewpoint of thinning the selective layers and the membrane itself. The gas permeation behavior of membranes with ultimate thicknesses and their future directions are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678452 | PMC |
http://dx.doi.org/10.1080/14686996.2017.1386531 | DOI Listing |
Polymers (Basel)
January 2025
State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.
View Article and Find Full Text PDFMolecules
January 2025
School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the barrier.
View Article and Find Full Text PDFFASEB J
January 2025
Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
Congenital heart disease (CHD) represents a major birth defect associated with substantial morbidity and mortality. Although environmental factors are acknowledged as potential contributors to CHD, the underlying mechanisms remain poorly understood. Bisphenol A (BPA), a common endocrine disruptor, has attracted significant attention due to its widespread use and associated health risks.
View Article and Find Full Text PDFDent J (Basel)
January 2025
Department of Oral Implantology, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan.
This investigation focused on the influence of collagen on the integrity of the Schneiderian membrane during maxillary sinus augmentation in a rabbit model. The aim of this study was to elucidate the relationship between membrane integrity and bone regeneration in augmented maxillary sinuses using collagenated and non-collagenated grafts, through detailed histological and histomorphometric analyses. In this forward-looking, randomized, split-mouth design, bilateral maxillary sinus augmentation was conducted on 12 rabbits.
View Article and Find Full Text PDFNMC Case Rep J
December 2024
Department of Neurosurgery, Institute of Science Tokyo, Tokyo, Japan.
Moyamoya disease (MMD) is characterized by distinct histopathological changes in intracranial arteries, such as narrowing of the arterial lumen due to thickening of the tunica intima, waving of the internal elastic membranes, and thinning of the tunica media. Ring finger protein 213 is a susceptibility gene for MMD that affects clinical outcomes. However, little is known about its relationship with histopathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!