Degeneration of the Substantia Nigra Following Ipsilateral Striatal Infarction.

Intern Med

Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan.

Published: March 2018

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874359PMC
http://dx.doi.org/10.2169/internalmedicine.9442-17DOI Listing

Publication Analysis

Top Keywords

degeneration substantia
4
substantia nigra
4
nigra ipsilateral
4
ipsilateral striatal
4
striatal infarction
4
degeneration
1
nigra
1
ipsilateral
1
striatal
1
infarction
1

Similar Publications

Advanced magnetic resonance imaging (MRI) techniques are transforming the study of movement disorders by providing valuable insights into disease mechanisms. This narrative review presents a comprehensive overview of their applications in this field, offering an updated perspective on their potential for early diagnosis, disease monitoring, and therapeutic evaluation. Emerging MRI modalities such as neuromelanin-sensitive imaging, diffusion-weighted imaging, magnetization transfer imaging, and relaxometry provide sensitive biomarkers that can detect early microstructural degeneration, iron deposition, and connectivity disruptions in key regions like the substantia nigra.

View Article and Find Full Text PDF

Identifying potential genes driving ferroptosis in the substantia nigra and dopaminergic neurons in Parkinson's disease.

Mol Cell Neurosci

January 2025

Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Parkinson's disease (PD) is a neurodegenerative disorder marked by dopaminergic (DA) neuron degeneration in the substantia nigra (SN). Conventional dopamine replacement therapies provide limited long-term efficacy and significant side effects. Emerging evidence suggests ferroptosis-a form of cell death driven by iron-dependent lipid peroxidation-contributes to PD pathology, though direct evidence linking dysregulation of ferroptosis-related genes in DA neuron loss in PD remains limited.

View Article and Find Full Text PDF

A Novel Rat Model for Inflammatory Gut-Brain Interactions in Parkinson's Disease.

Eur J Neurosci

January 2025

Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.

Gut inflammation is a salient prodromal feature of Parkinson's disease (PD) implicated in pathologic processes leading to nigrostriatal dopaminergic degeneration. However, existing rodent models of PD are suboptimal for investigating the interaction between gut inflammation and neuropathology. This study aimed to develop a rat model of PD in which gut inflammation exacerbated PD symptoms induced by a parkinsonian lesion.

View Article and Find Full Text PDF

Degeneration of midbrain nigrostriatal dopaminergic neurons is a pathological hallmark of Parkinson's disease (PD). Peripheral delivery of a compound(s) to arrest or slow this dopaminergic degeneration is a key therapeutic goal. Pan-inhibitors of histone deacetylase (HDAC) enzymes, key epigenetic regulators, have shown therapeutic promise in PD models.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!