We previously revealed that epithelial-to-mesenchymal transition (EMT) was mediated by ΔNp63β, a splicing variant of ΔNp63, in oral squamous cell carcinoma (OSCC). Recent studies have highlighted the involvement of microRNA (miRNA) in EMT of cancer cells, though the mechanism remains unclear. To identify miRNAs responsible for ΔNp63β-mediated EMT, miRNA microarray analyses were performed by ΔNp63β-overexpression in OSCC cells; SQUU-B, which lacks ΔNp63 expression and displays EMT phenotypes. miRNAs microarray analyses revealed miR-205 was the most up-regulated following ΔNp63β-overexpression. In OSCC cells, miR-205 expression was positively associated with ΔNp63 and negatively with zinc-finger E-box binding homeobox (ZEB) 1 and ZEB2, potential targets of miR-205. miR-205 overexpression by miR-205 mimic transfection into SQUU-B cells led to decreasing ZEB1, ZEB2, and mesenchymal markers, increasing epithelial markers, and reducing cell motilities, suggesting inhibition of EMT phenotype. Interestingly, the results opposite to this phenomenon were obtained by transfection of miR-205 inhibitor into OSCC cells, which express ΔNp63 and miR-205. Furthermore, target protector analyses revealed direct regulation by miR-205 of ZEB1 and ZEB2 expression. These results showed tumor-suppressive roles of ΔNp63β and miR-205 by inhibiting EMT thorough modulating ZEB1 and ZEB2 expression in OSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6055661 | PMC |
http://dx.doi.org/10.1002/jcp.26267 | DOI Listing |
NAR Cancer
March 2025
Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France.
The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.
View Article and Find Full Text PDFGenes Cells
December 2024
Department of Biochemistry, University of Yamanashi, Chuo, Yamanashi, Japan.
Cancers (Basel)
September 2024
Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs.
View Article and Find Full Text PDFBreast Cancer Res
September 2024
Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan.
Background: Although tumor cells undergoing epithelial-mesenchymal transition (EMT) typically exhibit spindle morphology in experimental models, such histomorphological evidence of EMT has predominantly been observed in rare primary spindle carcinomas. The characteristics and transcriptional regulators of spontaneous EMT in genetically unperturbed non-spindled carcinomas remain underexplored.
Methods: We used primary culture combined with RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), and in situ RNA-seq to explore the characteristics and transcription factors (TFs) associated with potential spontaneous EMT in non-spindled breast carcinoma.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!