Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Swinholides are 42-carbon ring polyketides with a 2-fold axis of symmetry. They are potent cytotoxins that disrupt the actin cytoskeleton. Swinholides were discovered from the marine sponge sp. and were long suspected to be produced by symbiotic bacteria. Misakinolide, a structural variant of swinholide, was recently demonstrated to be the product of a symbiotic heterotrophic proteobacterium. Here, we report the production of swinholide A by an axenic strain of the terrestrial cyanobacterium sp. strain UHCC 0450. We located the 85-kb -AT polyketide synthase (PKS) swinholide biosynthesis gene cluster from a draft genome of sp. UHCC 0450. The swinholide and misakinolide biosynthesis gene clusters share an almost identical order of catalytic domains, with 85% nucleotide sequence identity, and they group together in phylogenetic analysis. Our results resolve speculation around the true producer of swinholides and demonstrate that bacteria belonging to two distantly related phyla both produce structural variants of the same natural product. In addition, we described a biosynthesis cluster from sp. strain UHCC 0451 for the synthesis of the cytotoxic and antifungal scytophycin. All of these biosynthesis gene clusters were closely related to each other and created a group of cytotoxic macrolide compounds produced by -AT PKSs of cyanobacteria and proteobacteria. Many of the drugs in use today originate from natural products. New candidate compounds for drug development are needed due to increased drug resistance. An increased knowledge of the biosynthesis of bioactive compounds can be used to aid chemical synthesis to produce novel drugs. Here, we show that a terrestrial axenic culture of cyanobacterium produces swinholides, which have been previously found only from marine sponge or samples related to them. Swinholides are polyketides with a 2-fold axis of symmetry, and they are potent cytotoxins that disrupt the actin cytoskeleton. We describe the biosynthesis gene clusters of swinholide from cyanobacteria, as well as the related cytotoxic and antifungal scytophycin from cyanobacteria, and we study the evolution of their -AT polyketide synthases. Interestingly, swinholide is closely related to misakinolide produced by a symbiotic heterotrophic proteobacterium, demonstrating that bacteria belonging to two distantly related phyla and different habitats can produce similar natural products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772238 | PMC |
http://dx.doi.org/10.1128/AEM.02321-17 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!