RcnR, a transcriptional regulator in , derepresses the expression of the export proteins RcnAB upon binding Ni(II) or Co(II). Lack of structural information has precluded elucidation of the allosteric basis for the decreased DNA affinity in RcnR's metal-bound states. Here, using hydrogen-deuterium exchange coupled with MS (HDX-MS), we probed the RcnR structure in the presence of DNA, the cognate metal ions Ni(II) and Co(II), or the noncognate metal ion Zn(II). We found that cognate metal binding altered flexibility from the N terminus through helix 1 and modulated the RcnR-DNA interaction. Apo-RcnR and RcnR-DNA complexes and the Zn(II)-RcnR complex exhibited similar H uptake kinetics, with fast-exchanging segments located in the N terminus, in helix 1 (residues 14-24), and at the C terminus. The largest difference in H incorporation between apo- and Ni(II)- and Co(II)-bound RcnR was observed in helix 1, which contains the N terminus and His-3, and has been associated with cognate metal binding. H uptake in helix 1 was suppressed in the Ni(II)- and Co(II)-bound RcnR complexes, in particular in the peptide corresponding to residues 14-24, containing Arg-14 and Lys-17. Substitution of these two residues drastically affected DNA-binding affinity, resulting in expression in the absence of metal. Our results suggest that cognate metal binding to RcnR orders its N terminus, decreases helix 1 flexibility, and induces conformational changes that restrict DNA interactions with the positively charged residues Arg-14 and Lys-17. These metal-induced alterations decrease RcnR-DNA binding affinity, leading to expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766909PMC
http://dx.doi.org/10.1074/jbc.RA117.000398DOI Listing

Publication Analysis

Top Keywords

cognate metal
16
metal binding
12
rcnr orders
8
orders terminus
8
dna affinity
8
niii coii
8
terminus helix
8
residues 14-24
8
niii- coii-bound
8
coii-bound rcnr
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!