The aim of this study was to select species with higher potential to accumulate Cs among the available mushroom species, by determining the activity concentrations of Cs in mushrooms collected along north and north-western part of Croatia. A total of 55 samples of 14 different species were analyzed and the potential of mycorrhizal and saprotrophic species to accumulate Cs was compared. A wide range of the dry weight activity concentrations of Cs was detected, ranging from 0.95 to 1210 Bq/kg (154 Bq/kg mean value; 52.3 Bq/kg geometric mean) in mycorrhizal and 1.05-36.8 Bq/kg (8.90 Bq/kg mean value; 5.49 Bq/kg geometric mean) in saprotrophic species. Statistical analyses showed that mycorrhizal species accumulate significantly higher concentrations of Cs and thus could perform better as long-term bioindicators of environmental pollution by radiocaesium then saprotrophic species. The comparison of Boletus sp. and Hydnum repandum (both mycorrhizal species commonly found in Croatia) showed, in general order of magnitude, higher accumulation in Hydnum repandum. Clearly, mushrooms, especially mycorrhizal species, can be used as significant indicators even decades after the occurrence of any serious Cs contamination event. However, as a wide range of values indicates that various parameters may influence the total uptake of the Cs into the mushroom fruit bodies, it is necessary to emphasize that Cs activity detected in a single mushroom sample is very site-specific.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2017.11.004 | DOI Listing |
Genome Biol Evol
January 2025
Earlham Institute, Norwich, UK.
Somion occarium is a wood-decaying bracket fungus belonging to an order known to be rich in useful chemical compounds. Despite its widespread distribution, S. occarium has been assessed as endangered on at least one national Red List, presumably due to loss of old-growth forest habitat.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
Department of Ecology and Evolutionary Biology and University of Michigan Herbarium, University of Michigan, Ann Arbor, MI 48109, USA.
Lorchels, also known as false morels (Gyromitra sensu lato), are iconic due to their brain-shaped mushrooms and production of gyromitrin, a deadly mycotoxin. Molecular phylogenetic studies have hitherto failed to resolve deep-branching relationships in the lorchel family, Discinaceae, hampering our ability to settle longstanding taxonomic debates and to reconstruct the evolution of toxin production. We generated 75 draft genomes from cultures and ascomata (some collected as early as 1960), conducted phylogenomic analyses using 1542 single-copy orthologs to infer the early evolutionary history of lorchels, and identified genomic signatures of trophic mode and mating-type loci to better understand lorchel ecology and reproductive biology.
View Article and Find Full Text PDFMycologia
January 2025
Research Unit Tropical Mycology and Plants-Soil Fungi Interactions (Mytips), Faculty of Agronomy, University of Parakou, Parakou BP 123, Benin.
Intensive mycological surveys in southern Benin focused on species of (Pleosporales) resulted in the collection and sequencing of numerous specimens on dead plant debris of different hosts. Majority of the collections belonged to the monomorphic species , except for two specimens of a hitherto unknown species, which is introduced as . The fungus was collected on dead twig of still attached to the tree and dead peduncle of .
View Article and Find Full Text PDFMol Ecol
January 2025
ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.
Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.
View Article and Find Full Text PDFEcol Lett
January 2025
Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.
Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!