Background: Platelet-activating factor acetylhydrolase 1B1 (LIS1), a critical mediator of neuronal migration in developing brain, is expressed throughout life. However, relatively little is known about LIS1 function in the mature brain. We previously demonstrated that LIS1 involvement in the formation and turnover of synaptic protrusions and synapses of young brain after neuronal migration is complete. Here we examine the requirement for LIS1 to maintain hippocampal circuit function in adulthood.

Methods: Effects of conditional Lis1 inactivation in excitatory pyramidal neurons, starting in juvenile mouse brain, were probed using high-resolution approaches combining mouse genetics, designer receptor exclusively activated by designer drug technology to specifically manipulate CA1 pyramidal neuron excitatory activity, electrophysiology, hippocampus-selective behavioral testing, and magnetic resonance imaging tractography to examine the connectivity of LIS1-deficient neurons.

Results: We found progressive excitatory and inhibitory postsynaptic dysfunction as soon as 10 days after conditional inactivation of Lis1 targeting CA1 pyramidal neurons. Surprisingly, by postnatal day 60 it also caused CA1 histological disorganization, with a selective decline in parvalbumin-expressing interneurons and further reduction in inhibitory neurotransmission. Accompanying these changes were behavioral and cognitive deficits that could be rescued by either designer receptor exclusively activated by designer drug-directed specific increases in CA1 excitatory transmission or pharmacological enhancement of gamma-aminobutyric acid transmission. Lagging behind electrophysiological changes was a progressive, selective decline in neural connectivity, affecting hippocampal efferent pathways documented by magnetic resonance imaging tractography.

Conclusions: LIS1 supports synaptic function and plasticity of mature CA1 neurons. Postjuvenile loss of LIS1 disrupts the structure and cellular composition of the hippocampus, its connectivity with other brain regions, and cognition dependent on hippocampal circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809292PMC
http://dx.doi.org/10.1016/j.biopsych.2017.09.011DOI Listing

Publication Analysis

Top Keywords

lis1
9
neuronal migration
8
pyramidal neurons
8
designer receptor
8
receptor exclusively
8
exclusively activated
8
activated designer
8
ca1 pyramidal
8
magnetic resonance
8
resonance imaging
8

Similar Publications

Heterozygous inversion on chromosome 17 involving PAFAH1B1 detected by whole genome sequencing in a patient suffering from pachygyria.

Eur J Med Genet

December 2024

Department of Neurology & Rehabilitation, Qingdao Women & Children's Hospital, Qingdao University, Qingdao, China. Electronic address:

Lissencephaly (LIS) is a subtype of malformations of cortical development (MCD), characterized by smooth brain surfaces and underdeveloped gyri and sulci. This study investigates the genetic cause of pachygyria in a Chinese male infant diagnosed with the condition, who previously showed no causative variant through trio whole exome sequencing (Trio-WES) and copy number variation sequencing (CNVseq). Whole-genome sequencing (WGS) was conducted, revealing a novel heterozygous inversion spanning 1.

View Article and Find Full Text PDF

Correction: NudCL2 regulates cell migration by stabilizing both myosin-9 and LIS1 with Hsp90.

Cell Death Dis

December 2024

Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

View Article and Find Full Text PDF

Insights into the distinct membrane targeting mechanisms of WDR91 family proteins.

Structure

December 2024

China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China; College of Medicine, Zhengzhou University, Zhengzhou, Henan 450052, China. Electronic address:

WDR91 and SORF1, members of the WD repeat-containing protein 91 family, control phosphoinositide conversion by inhibiting phosphatidylinositol 3-kinase activity on endosomes, which promotes endosome maturation. Here, we report the crystal structure of the human WDR91 WD40 domain complexed with Rab7 that has an unusual interface at the C-terminus of the Rab7 switch II region. WDR91 is highly selective for Rab7 among the tested GTPases.

View Article and Find Full Text PDF

Cytoplasmic dynein-1 (dynein) is an essential molecular motor controlled in part by autoinhibition. We recently identified a structure of partially autoinhibited dynein bound to Lis1, a key dynein regulator mutated in the neurodevelopmental disease lissencephaly. This structure provides an intermediate state in dynein's activation pathway; however, other structural information is needed to fully explain Lis1 function in dynein activation.

View Article and Find Full Text PDF

Systems mapping of bidirectional endosomal transport through the crowded cell.

Curr Biol

October 2024

Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands. Electronic address:

Kinesin and dynein-dynactin motors move endosomes and other vesicles bidirectionally along microtubules, a process mainly studied under in vitro conditions. Here, we provide a physiological bidirectional transport model following color-coded, endogenously tagged transport-related proteins as they move through a crowded cellular environment. Late endosomes (LEs) surf bidirectionally on Protrudin-enriched endoplasmic reticulum (ER) membrane contact sites, while hopping and gliding along microtubules and bypassing cellular obstacles, such as mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!