Structural Analysis of CD59 of Chinese Tree Shrew: A New Reference Molecule for Human Immune System Specific CD59 Drug Discovery.

Curr Drug Discov Technol

Department of Physics, NSHM Faculty of Engineering & Technology, NSHM, Knowledge Campus, Durgapur-713212, India.

Published: August 2019

Background: Chinese tree shrews (Tupaia belangeri chinensis) bear several characteristics that are considered to be very crucial for utilizing in animal experimental models in biomedical research. Subsequent to the identification of key aspects and signaling pathways in nervous and immune systems, it is revealed that tree shrews acquire common as well as unique characteristics, and hence offer a genetic basis for employing them as a prospective model for biomedical research. CD59 glycoprotein, commonly referred to as MAC-inhibitory protein (MAC-IP), membrane inhibitor of reactive lysis (MIRL), or protectin, is encoded by the CD59 gene in human beings. It is the member of the LY6/uPAR/alpha-neurotoxin protein family.

Objectives: With this initial point, the objective of this study was to determine a comparative composite based structure of CD59 of Chinese tree shrew. The additional objective of this study was to examine the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the assistance of several bioinformatical analytical tools.

Methods: CD59 Amino acid sequence of Chinese tree shrew was collected from the online database system of National Centre for Biotechnology Information. SignalP 4.0 online server was employed for detection of signal peptide instance within the protein sequence of CD59. Molecular model structure of CD59 protein was generated by the Iterative Threading ASSEmbly Refinement (I-TASSER) suite. The confirmation for three-dimensional structural model was evaluated by structure validation tools. Location of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, and hydrophobicity molecular surface analysis was performed with the help of Chimera tool. Electrostatic potential analysis was carried out with the adaptive Poisson-Boltzmann solver package. Subsequently validated model was used for the functionally critical amino acids and active site prediction. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program.

Result: Analysis of Ramachandran plot for Chinese tree shrew depicted that overall, 100% of the residues in homology model were observed in allowed and favored regions, sequentially leading to the validation of the standard of generated protein structural model. In case of CD59 of Chinese tree shrew, the total score of G-factor was found to be -0.66 that was generally larger than the acceptable value. This approach suggests the significance and acceptability of the modeled structure of CD59 of Chinese tree shrew. The molecular model data in cooperation to other relevant post model analysis data put forward molecular insight into protecting activity of CD59 protein molecule of Chinese tree shrew.

Conclusion: In the present study, we have proposed the first molecular model structure of uncharted CD59 of Chinese tree shrew by significantly utilizing the comparative composite modeling approach. Therefore, the development of a structural model of the CD59 protein was carried out and analyzed further for deducing molecular enrichment technique. The collaborative effort of molecular model and other relevant data of post model analysis carry forward molecular understanding to protecting activity of CD59 functions towards better insight of features of this natural lead compound.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570163814666171117131838DOI Listing

Publication Analysis

Top Keywords

chinese tree
36
tree shrew
28
cd59 chinese
20
molecular model
16
cd59
14
model
12
structure cd59
12
amino acid
12
modeled structure
12
cd59 protein
12

Similar Publications

Understanding sustainability of woody species suitability zones on the Loess Plateau for optimal creation zone selection in response to future climate change.

J Environ Manage

January 2025

School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; Qilaotu Mountain National Observation and Research Station of Chinese Forest Ecosystem, Chifeng, 024400, China.

Climate change has profound implications for the distribution of suitable habitats for woody species. In this study, we assessed the optimal distribution thresholds for twelve woody species on the Loess Plateau using the Maximum Entropy (MaxEnt) model, incorporating sample points of tree species alongside relevant environmental variables. We analyzed the sustainability of potentially suitable zones and proposed a framework for selecting a regulatory model to establish the most suitable creation zones in response to future climate change.

View Article and Find Full Text PDF

Occurrence of AG-5 Causing Root Rot on in Northwestern China.

Plant Dis

January 2025

Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China;

Astragalus mongholicus is a perennial Chinese medicinal herb in the family Leguminosae widely cultivated in China. In September 2023, A. mongholicus plants in a field in Weiyuan County, Gansu Province, showed symptoms of circular or irregular brown, sunken and necrotic lesions, multiple lesions coalesced, and brown longitudinal cracks in the roots.

View Article and Find Full Text PDF

First Report of Causing Black Leaf Spot on in China.

Plant Dis

January 2025

Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China;

Chinese yam ( Turcz.), known for its nutrient-rich underground tubers, is both a food source and a traditional Chinese medicinal plant. It offers significant nutritional and medicinal benefits.

View Article and Find Full Text PDF

PagSND1-B1 Regulates Wood Formation by Influencing Phosphorus Absorption and Distribution in Poplar.

Plant Cell Environ

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.

In natural environments, the growth and development of trees are continuously affected by phosphorus (P) starvation stress. However, the mechanisms through which trees balance stem growth and P distribution remain unknown. This study found that in the woody model species poplar, the P loss in stems is more severe than that in roots and leaves under P starvation conditions, thereby inhibiting stem development and reducing the expression of numerous genes related to wood formation, including PagSND1-B1.

View Article and Find Full Text PDF

Objective: Presentation delay of cancer patients prevents the patient from timely diagnosis and treatment leading to poor prognosis. Predicting the risk of presentation delay is crucial to improve the treatment outcomes. This study aimed to develop and validate prediction models of presentation delay risk in gastric cancer patients by using various machine learning models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!