In situ long-term modeling of phenanthrene dynamics in an aged contaminated soil using the VSOIL platform.

Sci Total Environ

INRA, Laboratoire Sols et Environnement, UMR 1120, F-54518 Vandoeuvre-lès-Nancy, France; Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, F-54518 Vandoeuvre-lès-Nancy, France. Electronic address:

Published: April 2018

Management and remediation actions of polycyclic aromatic hydrocarbons (PAH) contaminated sites require an accurate knowledge of the dynamics of these chemicals in situ under real conditions. Here we developed, under the Virtual Soil Platform, a global model for PAH that describes the principal physical and biological processes controlling the dynamics of PAH in soil under real climatic conditions. The model was applied first to simulate the observed dynamics of phenanthrene in situ field experimental plots of industrial contaminated soil. In a second step, different long-term scenarios of climate change or bioavailability increase were applied. Our results show that the model can adequately predict the fate of phenanthrene and can contribute to clarify some of unexplored aspects regarding the behavior of phenanthrene in soil like its degradation mechanism and stabilization. Tested prospective scenarios showed that bioavailability increase (through the addition of solvent or surfactants) resulted in significant increase in substrate transfer rate, hence reducing remediation time. Regarding climate change effect, the model indicated that phenanthrene concentration decreased by 54% during 40years with a natural attenuation and both scenarios chosen for climatic boundaries provided very similar results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.11.089DOI Listing

Publication Analysis

Top Keywords

contaminated soil
8
climate change
8
bioavailability increase
8
phenanthrene
5
soil
5
situ long-term
4
long-term modeling
4
modeling phenanthrene
4
dynamics
4
phenanthrene dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!