Gold nanoparticles (GNPs) are advantageous as an adjuvant in the design of effective vaccines and in the preparation of high-affinity antibodies to haptens and complete antigens. Another method of activating immunocompetent cells with colloidal gold is to conjugate GNPs with CpG oligodeoxynucleotides (ODNs). We examined how the size and shape of GNPs and various combinations of GNPs and CpG ODNs 1826 affect the immune response. When animals were injected with a model antigen (BSA) coupled to gold nanospheres (diameters, 15 and 50nm), nanorods, nanoshells, and nanostars, the titers of the resultant antibodies differed substantially. The antibody titers decreased in the sequence GNPs-50nm>GNPs-15nm>nanoshells>nanostars>nanorods>native BSA. We conclude that 50 and 15nm gold nanospheres are the optimal antigen carrier and adjuvant for immunization. The highest titer of anti-BSA antibodies was detected in the blood serum of mice immunized simultaneously with BSA-GNP and CpG-GNP conjugates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2017.11.008DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
size shape
8
gnps cpg
8
gold nanospheres
8
gold
5
nanoparticles adjuvant
4
adjuvant influence
4
influence size
4
shape technique
4
technique combination
4

Similar Publications

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

The evaluation of nanoplastics bioaccumulation in living organisms is still considered an emerging challenge, especially as global plastic production continues to grow, posing a significant threat to humans, animals, and the environment. The goal of this work is to advance the development of standardized methods for reliable biomonitoring in the future. It is crucial to employ sensitive techniques that can detect and measure nanoplastics effectively, while ensuring minimal impact on the environment.

View Article and Find Full Text PDF

The safety screening of manufactured nanomaterials (MNMs) is essential for their adoption by consumers and the marketplace. Lately, animal-based testing has been replaced by mechanistically informative in vitro assays due to the requirements of regulatory agencies. Cell viability assays are widely employed for manufactured nanomaterial hazard screening as a first-tier approach.

View Article and Find Full Text PDF

MicroRNA122 (miR-122) is a microRNA that is highly expressed in hepatocytes and has been identified as a prospective therapeutic target and biomarker for liver injury. An expanding body of research has demonstrated that miR-122 is a critical regulator in both the initiation and progression of a wide range of liver diseases. Traditional methods for detecting miR-122 mainly include Northern blotting and qRT-PCR, but they are technically complex and cumbersome, requiring expensive instruments and high technical requirements.

View Article and Find Full Text PDF

A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!