In plants, a key class of genes comprising most of disease resistance (R) genes encodes Nucleotide-binding leucine-rich repeat (NL) proteins. Access to common bean (Phaseolus vulgaris) genome sequence provides unparalleled insight into the organization and evolution of this large gene family (∼400 NL) in this important crop. As observed in other plant species, most common bean NL are organized in cluster of genes. However, a particularity of common bean is that these clusters are often located in subtelomeric regions close to terminal knobs containing the satellite DNA khipu. Phylogenetically related NL are spread between different chromosome ends, suggesting frequent exchanges between non-homologous chromosomes. NL peculiar location, in proximity to heterochromatic regions, led us to study their DNA methylation status using a whole-genome cytosine methylation map. In common bean, NL genes displayed an unusual body methylation pattern since half of them are methylated in the three contexts, reminiscent of the DNA methylation pattern of repeated sequences. Moreover, 90 NL were also abundantly targeted by 24 nt siRNA, with 90% corresponding to methylated NL genes. This suggests the existence of a transcriptional gene silencing mechanism of NL through the RdDM (RNA-directed DNA methylation) pathway in common bean that has not been described in other plant species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5909424 | PMC |
http://dx.doi.org/10.1093/dnares/dsx046 | DOI Listing |
Virol J
January 2025
Department of Pediatric, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China.
Background: Mycoplasma pneumoniae (MP) is a common pathogen for respiratory infections in children. Previous studies have reported respiratory tract microbial disturbances associated with MP infection (MPI); however, since the COVID-19 pandemic, respiratory virome data in school-aged children with MPI remains insufficient. This study aims to explore the changes in the respiratory virome caused by MPI after the COVID-19 pandemic to enrich local epidemiological data.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
Common bean (Phaseolus vulgaris L.) is a crop rich in protein, minerals, and starch. Viruses are a significant limiting factor in increasing the production of legumes, particularly common beans.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:
This study investigated the dynamic changes in legume starches (common vetch, mung bean, and pea) during gelatinization. All three starches displayed a similar pattern: water absorption and swelling at lower temperatures (50-65 °C), structural rupture at medium temperatures (65-75 °C), and melting/reorganization at higher temperatures (75-90 °C). Gelatinization likely starts with internal structural dissociation, as evidenced by the weakening of the double helix structure and decreasing order observed throughout the process.
View Article and Find Full Text PDFJ Exp Bot
January 2025
School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
This article comments on: 2025. A dTALE approach demonstrates that induction of common bean promotes resistance to common bacterial blight. Journal of Experimental Botany , 607–620.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!