Site-Specific One-to-One Click Coupling of Single Proteins to Individual Carbon Nanotubes: A Single-Molecule Approach.

J Am Chem Soc

School of Biological and Chemical Sciences, Institute of Bioengineering, and Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.

Published: December 2017

We report the site-specific coupling of single proteins to individual carbon nanotubes (CNTs) in solution and with single-molecule control. Using an orthogonal Click reaction, Green Fluorescent Protein (GFP) was engineered to contain a genetically encoded azide group and then bound to CNT ends in different configurations: in close proximity or at longer distances from the GFP's functional center. Atomic force microscopy and fluorescence analysis in solution and on surfaces at the single-protein level confirmed the importance of bioengineering optimal protein attachment sites to achieve direct protein-nanotube communication and bridging.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b07362DOI Listing

Publication Analysis

Top Keywords

coupling single
8
single proteins
8
proteins individual
8
individual carbon
8
carbon nanotubes
8
site-specific one-to-one
4
one-to-one click
4
click coupling
4
nanotubes single-molecule
4
single-molecule approach
4

Similar Publications

Somatic mutations in individual cells lead to genomic mosaicism, contributing to the intricate regulatory landscape of genetic disorders and cancers. To evaluate and refine the detection of somatic mosaicism across different technologies with personalized donor-specific assembly (DSA), we obtained tissue from the dorsolateral prefrontal cortex (DLPFC) of a post-mortem neurotypical 31-year-old individual. We sequenced bulk DLPFC tissue using Oxford Nanopore Technologies (∼60X), NovaSeq (∼30X), and linked-read sequencing (∼28X).

View Article and Find Full Text PDF

Neurochemical signals like dopamine (DA) play a crucial role in a variety of brain functions through intricate interactions with other neuromodulators and intracellular signaling pathways. However, studying these complex networks has been hindered by the challenge of detecting multiple neurochemicals simultaneously. To overcome this limitation, we developed a single-protein chemigenetic DA sensor, HaloDA1.

View Article and Find Full Text PDF

Transcription repressor BACH2 redirects short-lived terminally differentiated effector into long-lived memory cells. We postulate that BACH2-mediated long-lived memory programs promote HIV-1 persistence in gut CD4+ T cells. We coupled single-cell DOGMA-seq and TREK-seq to capture chromatin accessibility, transcriptome, surface proteins, T cell receptor, HIV-1 DNA and HIV-1 RNA in 100,744 gut T cells from ten aviremic HIV-1+ individuals and five HIV-1- donors.

View Article and Find Full Text PDF

Background: Clinical studies have demonstrated the high efficacy of using chimeric antigen receptor (CAR)-T cells targeting B-cell maturation antigen (BCMA) and orphan G protein-coupled receptor, class C group 5 member D (GPRC5D) to treat relapsed or refractory multiple myeloma (RRMM). In this study, we compared the efficacy and safety of BCMA CAR-T-cell therapy (BCMA CAR-T) and GPRC5D CAR T-cell therapy (GPRC5D CAR-T) in patients with RRMM.

Methods: We retrieved and included eligible clinical trials of BCMA or GPRC5D CAR-T for RRMM patients.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!