Core-sheath fibers using different Eudragit materials were successfully produced, and their controlled multi-pH responses have been demonstrated. Core-sheath fibers made of Eudragit L 100 (EL100) core and Eudragit S 100 (ES100) sheath provide protection and/or controlled release of core material at pH 6 by adjusting the sheath thickness (controlled by the flow rate of source polymer solution). The thickest sheath (∼250 nm) provides the least core release ∼1.25%/h, while the thinnest sheath (∼140 nm) provides much quicker release ∼16.75%/h. Furthermore, switching core and sheath material dramatically altered the pH response. Core-sheath fibers made of ES100 core and EL100 sheath can provide a consistent core release rate, while the sheath release rate becomes higher as the sheath layer becomes thinner. For example, the thinnest sheath (∼120 nm) provides a core and sheath release ratio of 1:2.5, while the thickest sheath (∼200 nm) shows only a ratio of 1:1.7. All core-sheath Eudragit fibers show no noticeable release at pH 5, while they are completely dissolved at pH 7. Extremely high surface area in the porous network of the fiber membranes provides much faster (>30 times) response to external pH changes as compared to that of equivalent cast films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b16080 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden.
Electropolymerized polypyrrole (PPy) is considered as one of the promising polymers for use in ionic-electroactive or conducting polymer (CP) actuators. Its electromechanical properties surpass those of other prominent CPs such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) or polyaniline. However, freestanding and linear contracting actuator fibers made solely of electropolymerized PPy are not available yet.
View Article and Find Full Text PDFNano Lett
November 2024
Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China.
Whereas high electrical conductivity and mechanical stretchability are both essentially required for flexible electronics, simultaneously achieving them remains a great challenge due to the "trade-off" effect. Herein, an ultrastretchable conductor with core-sheath heterogeneous interlocked structure was developed, induced by interfacial soldering silver nanowires (AgNWs) which gradually evolved into elastic conductive fiber. Adhesive polydopamine-functionalized MXene (PDM) was proposed as an interfacial solder to assemble AgNWs along fibers while induced strong cold-welding effect soldered them into superelastic interconnected network.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria.
The preparation of core-sheath fibers by electrospinning is a topic of significant interest for producing composite fibers with distinct core and sheath functionalities. Moreover, in core-sheath fibers, low-molecular-weight substances or nanosized inorganic additives can be deposited in a targeted manner within the core or the sheath. Commonly, for obtaining a core-sheath structure, coaxial electrospinning is used.
View Article and Find Full Text PDFJ Food Sci
November 2024
The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China.
Bio-based active food packaging materials have a high market demand. We use coaxial electrospinning technology to prepare core-shell structured nanofibers with sustained antibacterial and antioxidant properties. The fiber core layer was composed of gelatin and tea polyphenols, whereas tea polyphenols provide antibacterial and antioxidant properties; the fiber sheath was composed of pullulan polysaccharides with antioxidant properties.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Radioactive nuclides and highly toxic organophosphates are typical deadly threats. Materials with the function of radioactive substances adsorption and organophosphates degradation provide double protection. Herein, dual-functional polyamide (PA)/polyethyleneimine (PEI)@Zr-MOF fiber composite membranes, fabricated by in-situ solvothermal growth of Zr-MOF on PA/PEI electrospun fiber membranes, are designed for protection against two typical model compounds of iodine and dimethyl 4-nitrophenyl phosphate (DMNP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!