Curcumin is the main bioactive component of Curcuma longa L. and has recently aroused growing interest from the scientific community. Unfortunately, the medicinal properties attributed to curcuminoids are impaired by their low oral bioavailability or low solubility in aqueous solutions. Many strategies have been studied to improve curcumin solubility; however, the preparation of granules using hydrophilic materials has never been attempted. The aim of this work was to develop curcumin granules by fluidized bed hot-melt granulation using the hydrophilic carrier Gelucire® 50:13. A two-level factorial design was used to verify the influence of Gelucire® 50:13 and lactose contents found in the granules on their size, morphology, bulk and tapped densities, flow, moisture content, and water activity. The granules obtained were also evaluated by differential scanning calorimetry, thermogravimetric analysis, X-ray powder diffraction, and infrared spectrometry. The curcumin solubility and dissolution rates in water were determined by liquid chromatography. The best formulation provides an increase of curcumin solubility of 4642-fold and 3.8-fold compared to the physical mixture. The dissolution tests showed a maximum drug release from granules after 45 min of 70% at pH 1.2 and 80% at pH 5.8 and 7.4, while for non-granulated curcumin, the release was below 20% in all pH. The solid-state characterization and solubility measurement showed good stability of granules over 9 months. The results attest that the fluidized bed hot-melt granulation with hydrophilic binders is an attractive and promising alternative to obtain solid forms of curcumin with enhanced bioavailability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-017-0909-8 | DOI Listing |
Pharmaceutics
December 2024
Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
Active pharmaceutical ingredient (API) content is a critical quality attribute (CQA) of amorphous solid dispersions (ASDs) prepared by spraying a solution of APIs and polymers onto the excipients in fluid bed granulator. This study presents four methods for quantifying API content during ASD preparation. Raman and three near-infrared (NIR) process analysers were utilized to develop methods for API quantification.
View Article and Find Full Text PDFFood Eng Rev
August 2024
Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada.
Drying is a crucial unit operation within the functional foods and biopharmaceutical industries, acting as a fundamental preservation technique and a mechanism to maintain these products' bioactive components and nutritional values. The heat-sensitive bioactive components, which carry critical quality attributes, necessitate a meticulous selection of drying methods and conditions backed by robust research. In this review, we investigate challenges associated with drying these heat-sensitive materials and examine the impact of various drying methods.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, 10326 Gyeonggi Korea.
Heliyon
January 2025
Department of Food Science and Technology, Botswanan University of Agriculture and Natural Resources, Botswana.
Crit Rev Food Sci Nutr
January 2025
Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China.
The probiotic food sector is rapidly growing due to increased consumer demand for nutritional supplements. However, ensuring probiotic viability within the harsh conditions of the gastrointestinal tract remains a major challenge. While probiotic encapsulation is a promising solution to enhance probiotic viability, most traditional encapsulation methods have significant limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!