Purpose: Our purpose was to determine the changes in anterior chamber depth (ACD) and central lens thickness (CLT) during pharmacologically induced accommodation.

Methods: Following pupillary dilation with phenylephrine 10%, baseline auto-refractions and swept-source optical coherence tomographic biometric images (Zeiss IOLMaster 700) were obtained from the right eyes of 25 subjects aged 19 to 24 years. Pilocarpine 4% and phenylephrine 10% were then instilled into these right eyes. One hour later, auto-refractions and biometric imaging were repeated. Only data from eight of 25 subjects met the following stringent criteria to be included in the study analysis: pre and post-pilocarpine biometric foveal images were registerable, the images of the corneal centers were shifted by ≤100 μm, pupils >5 mm and the pharmacologically induced refractive change was ≥ -7 diopters.

Results: The mean auto-refractive accommodative change for the eight included subjects was -12.45 diopters (± 3.45 diopters). The mean change in CLT was 81 μm (± 54 μm) and the mean change in ACD was -145 μm (± 86 μm). Superimposition of the registered pre and post-pilocarpine biometric images of the sagittal sections of the whole eye from each subject demonstrated that the position of the whole lens did not shift either anteriorly, posteriorly or vertically during pharmacologically induced accommodation.

Conclusions: A small increase in lens thickness was associated with a large change in accommodative amplitude and no significant change in lens position as predicted by the Schachar theory.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00417-017-3843-2DOI Listing

Publication Analysis

Top Keywords

pharmacologically induced
12
change
8
lens thickness
8
phenylephrine 10%
8
biometric images
8
pre post-pilocarpine
8
post-pilocarpine biometric
8
images
5
mechanism accommodation
4
accommodation assessed
4

Similar Publications

Biodegradable Vanadium-Based Nanomaterials for Photothermal-Enhanced Tumor Ferroptosis and Pyroptosis.

ACS Appl Mater Interfaces

January 2025

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.

The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.

View Article and Find Full Text PDF

Tension-induced organelle stress: an emerging target in fibrosis.

Trends Pharmacol Sci

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.

Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma.

View Article and Find Full Text PDF

Unfolded protein response modulates Tyrosinase levels and melanin production during melanogenesis.

J Dermatol Sci

January 2025

Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan. Electronic address:

Background: Melanocytes protect the body from ultraviolet radiation by synthesizing melanin. Tyrosinase, a key enzyme in melanin production, accumulates in the endoplasmic reticulum (ER) during melanin synthesis, potentially causing ER stress. However, regulating ER function for melanin synthesis has been less studied than controlling Tyrosinase activity.

View Article and Find Full Text PDF

Background And Objective: To determine whether there is disproportionate reporting of hepatobiliary disorders in the United States (US) FDA Adverse Event Reporting System (FAERS) for individuals prescribed ketamine or esketamine.

Design: We identified Medical Dictionary for Regulatory Activities (MedDRA) terms in the FAERS related to hepatobiliary disorders.

Main Measures: Formulations of ketamine and esketamine were evaluated for the proportionality of reporting for each hepatobiliary disorder parameter using the reporting odds ratio (ROR).

View Article and Find Full Text PDF

Iron accumulation and mitochondrial dysfunction in astroglia are reported in Parkinson's disease (PD). Astroglia control iron availability in neurons in which dopamine (DA) synthesis is affected in PD. Despite their intimate relationship the role of DA in astroglial iron homeostasis is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!