The future of plastics recycling.

Science

University of Houston, Department of Chemical and Biomolecular Engineering, Houston, TX 77204, USA.

Published: November 2017

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaq0324DOI Listing

Publication Analysis

Top Keywords

future plastics
4
plastics recycling
4
future
1
recycling
1

Similar Publications

Objective.: There is a growing consensus that interpersonal processes are key to understanding psychotherapy. How might that be reflected in the brain? Recent research proposes that inter-brain synchrony is a crucial neural component of interpersonal interaction.

View Article and Find Full Text PDF

This review investigates the intricate relationship between exercise, brain-derived neurotrophic factor (BDNF), neuroplasticity, and cognitive function, with a focus on implications for neuropsychiatric and neurodegenerative disorders. A systematic review was conducted by searching various databases for relevant studies that explored the connections between exercise, BDNF, neuroplasticity, and cognitive health. The analysis of eligible studies revealed that exercise increases BDNF levels in the brain, promoting neuroplasticity and enhancing cognitive functions.

View Article and Find Full Text PDF

Genetic differentiation in traits is assumed to frequently occur in response to divergent natural selection. For example, developmental traits might respond to differences in climate. However, little is known about when and at which spatial scales environmental differences lead to genetic differentiation, and to what extent there is genetic differentiation also in trait plasticity.

View Article and Find Full Text PDF

Bioinspired Nanofluidic Circuits with Integrating Excitatory and Inhibitory Synapses.

Nano Lett

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Brain neural networks intricately integrate excitatory and inhibitory synaptic potentials to modulate the generation or suppression of action potentials, laying the foundation for neuronal computation. Although bioinspired nanofluidic systems have replicated some synaptic functions, complete integration of postsynaptic potentials remains unachieved. In this work, the developed ion concentration gradient nanofluidic memristor (ICGNM) modulates memristive effects through ion concentration gradient adjustments and exhibits synaptic plasticity phenomena, including paired-pulse facilitation, paired-pulse depression, and spike-rate-dependent plasticity.

View Article and Find Full Text PDF

Lineage tracing of pancreatic cells for mechanistic and therapeutic insights.

Trends Endocrinol Metab

January 2025

CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. Electronic address:

Recent advances in lineage-tracing technologies have significantly improved our understanding of pancreatic cell biology, particularly in elucidating the ontogeny and regenerative capacity of pancreatic cells. A deeper appreciation of the mechanisms underlying pancreatic cell identity and plasticity holds the potential to inform the development of new therapeutic modalities for conditions such as diabetes and pancreatitis. With this goal in mind, here we summarize advances, challenges, and future directions in tracing pancreatic cell origins and fates using lineage-tracing technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!