Chotosan (CTS), a traditional herbal formula called Kampo medicine, was shown to be effective in the treatment of vascular dementia in a clinical study, and exerted protective effects against transient cerebral ischemia-induced cognitive impairment in mice. In the present study, we investigated the neuroprotective effects of CTS using primary cultured rat cortical neurons. CTS (250-1000 μg/mL) inhibited neuronal death induced by 100 μM glutamate. This glutamate-induced neuronal death was blocked by a GluN2B-, but not GluN2A-containing NMDA receptor antagonist. Therefore, the neuroprotective effects of CTS were related to an inhibition of GluN2B-containing NMDA receptor-mediated responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2017.10.009DOI Listing

Publication Analysis

Top Keywords

glun2b- glun2a-containing
8
glun2a-containing nmda
8
nmda receptor-mediated
8
receptor-mediated responses
8
primary cultured
8
cortical neurons
8
neuroprotective effects
8
effects cts
8
neuronal death
8
neuroprotection chotosan
4

Similar Publications

Regulation of NMDAR activation efficiency by environmental factors and subunit composition.

J Gen Physiol

January 2025

Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.

NMDA receptors (NMDAR) convert the major excitatory neurotransmitter glutamate into a synaptic signal. A key question is how efficiently the ion channel opens in response to the rapid exposure to presynaptic glutamate release. Here, we applied glutamate to single channel outside-out patches and measured the successes of channel openings and the latency to first opening to assay the activation efficiency of NMDARs under different physiological conditions and with different human subunit compositions.

View Article and Find Full Text PDF

NMDA-type glutamate receptors are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The precise composition of the GluN2 subunits determines the channel's biophysical properties and influences its interaction with postsynaptic scaffolding proteins and signaling molecules involved in synaptic physiology and plasticity. The precise regulation of NMDAR subunit composition at synapses is crucial for proper synaptogenesis, neuronal circuit development, and synaptic plasticity, a cellular model of memory formation.

View Article and Find Full Text PDF

Glycine Transporter Type 1 (GlyT1) inhibition confers neuroprotection against different forms of cerebral damage. This effect occurs through the elevation of synaptic glycine concentrations, which enhances N-methyl-d-aspartate receptor (NMDAR) activation by glutamate. To investigate the neuroprotective mechanism of GlyT1 inhibition, we used the Middle Cerebral Artery Occlusion (MCAO) model in male C57BL/6 mice, aged 10-12 weeks.

View Article and Find Full Text PDF

Rescuing tri-heteromeric NMDA receptor function: the potential of pregnenolone-sulfate in loss-of-function GRIN2B variants.

Cell Mol Life Sci

May 2024

Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel.

N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits.

View Article and Find Full Text PDF

Excitotoxicity due to excessive activation of NMDARs is one of the main mechanisms of neuronal death during ischemic stroke. Previous studies have suggested that activation of either synaptic or extrasynaptic GluN2B-containing NMDARs results in neuronal damage, whereas activation of GluN2A-containing NMDARs promotes neuronal survival against ischemic insults. This study applied a systematic , , and approach to the discovery of novel and potential GluN1/2A NMDAR positive allosteric modulators (PAMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!