Sialic acid-binding lectins (SABLs) are ubiquitous ancient molecules with binding properties to N-acetyl or N-glycolyl carbohydrates, and play crucial roles in both adaptive and innate immune responses. In present study, recombinant protein and antibodies of two SABLs from mollusk Solen grandis (SgSABL-1 and SgSABL-2) were prepared to investigate their functions in innate immunity. The recombinant protein of SgSABL-1 (rSgSABL-1) could bind LPS, PGN and β-glucan in vitro, while rSgSABL-2 could only bind PGN rather than LPS and β-glucan. Be coincident with their PAMPs recognition properties, rSgSABL-1 displayed a broad agglutination spectrum towards gram-positive bacteria Micrococcus luteus, gram-negative bacteria Listonella anguillarum and fungi Pichia pastoris, and rSgSABL-2 only showed remarkable agglutinative effect on M. luteus and L. anguillarum. More importantly, after PAMPs recognition, rSgSABL-1 and rSgSABL-2 enhanced phagocytosis as well as encapsulation ability of hemocytes in vitro, and the enhanced encapsulation could be blocked by specific antibodies. All these results indicated that SgSABL-1 and SgSABL-2 functioned as two compensative pattern-recognition receptor (PRRs) with distinct recognition spectrum and involved in the innate immune response of S. grandis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2017.11.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!