Combination of amplified rDNA restriction analysis and high-throughput sequencing revealed the negative effect of colistin sulfate on the diversity of soil microorganisms.

Microbiol Res

Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Published: January 2018

AI Article Synopsis

  • Colistin sulfate impacts soil microorganisms, reducing their diversity and abundance, especially after 35 days of treatment.
  • High-throughput sequencing revealed a dose-dependent effect, where higher concentrations of colistin sulfate led to greater reductions in microbial diversity measures like Chao1 and ACE.
  • Specific microbial groups, like Bacillus, Clostridium, and Sphingomonas, were particularly sensitive, with significant decreases in other genera observed after prolonged exposure.

Article Abstract

Colistin sulfate is widely used in both human and veterinary medicine. However, its effect on the microbial ecologyis unknown. In this study, we determined the effect of colistin sulfate on the diversity of soil microorganisms by amplified rDNA restriction analysis (ARDRA) and high-throughput sequencing.ARDRAshowed that the diversity of DNA from soil microorganisms was reduced after soil was treated with colistin sulfate, with the most dramatic reductionobserved after 35days of treatment. High-throughput sequencing showed that the Chao1 and abundance-based coverage estimators (ACE) were reduced in the soils treated with colistin sulfate for 35 dayscompared to those treated with colistin sulfate for 7days. Furthermore, Chao1 and ACE tended to be lower when higher concentration of colistin sulfate was used, suggesting that the microbial abundance is reduced by colistin sulfate in a dose-dependent manner. Shannon index showed that the diversity of soil microorganism was reduced upon treatment with colistin sulfate compared to the untreated control group. Following 7days of treatment, Bacillus, Clostridiumand Sphingomonas were sensitive to all the concentration of colistin sulfate used in this study. Following 35days of treatment, the abundance of Choroplast, Haliangium, Pseudomonas, Lactococcus, and Clostridium was significantly decreased. Our results demonstrated that colistin sulfate especially at high concentration (≥5mg/kg) could alter the population structure of microorganisms and consequently the microbial community function in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2017.09.002DOI Listing

Publication Analysis

Top Keywords

colistin sulfate
44
diversity soil
12
soil microorganisms
12
treated colistin
12
colistin
11
sulfate
11
amplified rdna
8
rdna restriction
8
restriction analysis
8
high-throughput sequencing
8

Similar Publications

Structural and functional analysis of the lipoprotein chaperone LolA.

Front Microbiol

December 2024

Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.

Lipoproteins are crucial for maintaining the structural integrity of bacterial membranes. In Gram-negative bacteria, the localization of lipoprotein (Lol) system facilitates the transport of these proteins from the inner membrane to the outer membrane. In , an ε-proteobacterium, lipoprotein transport differs significantly from the canonical and well-studied system in , particularly due to the absence of LolB and the use of a LolF homodimer instead of the LolCE heterodimer.

View Article and Find Full Text PDF

The global race against antimicrobial resistance requires novel antimicrobials that are not only effective in killing specific bacteria, but also minimize the emergence of new resistances. Recently, CRISPR/Cas-based antimicrobials were proposed to address killing specificity with encouraging results. However, the emergence of target sequence mutations triggered by Cas-cleavage was identified as an escape strategy, posing the risk of generating new antibiotic-resistance gene (ARG) variants.

View Article and Find Full Text PDF

Carbapenem-resistant complex (CR-ECC), which is rapidly increasing as the cause of nosocomial infections, has limited treatment options. The aim of this study is to investigate the microbiological and clinical traits and molecular epidemiology of isolates of CR-ECC and provide guidance for antibiotic selection in clinical practice. Clinical CR-ECC isolates (ertapenem MIC ≥ 2 mg/L) were collected from 2021 to 2022.

View Article and Find Full Text PDF

Introduction: This study aimed to determine the bacterial profile and their antibiotic spectrum in patients with ventilator-associated pneumonia (VAP) and investigate the risk factors for VAP and the presence of multidrug-resistant (MDR) pathogens.

Materials And Methods: A cross-sectional study was included 105 patients with clinically suspected VAP in intensive care units (ICUs) of two university hospitals from Syria, between January 2023 and February 2024. Culture-positive included 69 samples (65.

View Article and Find Full Text PDF

Ventriculoperitoneal shunts (VPSs) have been proven to be life-saving procedures, but their complications pose challenges, particularly in this era of rising antibiotic resistance. We report a critically ill case with VPS infection due to colistin-resistant that was treated with intraventricular tigecycline as salvage therapy without adverse events, resulting in microbiologic cure and clinical response. The use of intraventricular tigecycline in the treatment of colistin-resistant appears promising; however, appropriate dosage adjustments and evidence-based recommendations are needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!