Infectious bursal disease virus protein VP4 suppresses type I interferon expression via inhibiting K48-linked ubiquitylation of glucocorticoid-induced leucine zipper (GILZ).

Immunobiology

State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. Electronic address:

Published: February 2019

Viruses have developed a variety of methods to evade host immune response. Our previous study showed that infectious bursal disease virus (IBDV) inhibited type I interferon production via interaction of VP4 with cellular glucocorticoid-induced leucine zipper (GILZ) protein. However, the exact underlying molecular mechanism is still unclear. In this study, we found that IBDV VP4 suppressed GILZ degradation by inhibiting K48-linked ubiquitylation of GILZ. Furthermore, mutation of VP4 (R41G) abolished the inhibitory effect of VP4 on IFN-β expression and GILZ ubiquitylation, indicating that the amino acid 41R of VP4 was required for the suppression of IFN-β expression and GILZ ubiquitylation. Moreover, IBDV infection or VP4 expression markedly inhibited endogenous GILZ ubiquitylation. Thus, IBDV VP4 suppresses type I interferon expression by inhibiting K48-linked ubiquitylation of GILZ, revealing a new mechanism employed by IBDV to suppress host response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2017.10.048DOI Listing

Publication Analysis

Top Keywords

type interferon
12
inhibiting k48-linked
12
k48-linked ubiquitylation
12
gilz ubiquitylation
12
infectious bursal
8
bursal disease
8
disease virus
8
vp4
8
vp4 suppresses
8
suppresses type
8

Similar Publications

KSHV hijacks the antiviral kinase IKKε to initiate lytic replication.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45.

View Article and Find Full Text PDF

Sjögren's syndrome (SS) is a prevalent systemic autoimmune disease with substantial impacts on women's health worldwide. Although oral Haemophilus parainfluenzae is reduced in SS, its significance remains unclear. This study aimed to elucidate the pathophysiological role of H.

View Article and Find Full Text PDF

pDCs, type 1 IFN, and the female predileXion of SSc.

J Exp Med

March 2025

Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Systemic sclerosis (SSc) is a debilitating autoimmune disease that preferentially afflicts women. The molecular origins of this female bias are unclear. A new study of plasmacytoid dendritic cells from SSc patients by Du et al.

View Article and Find Full Text PDF

Objective: To discover microRNA (miRNA)-RNA transcript interactions dysregulated in brains from persons with HIV-associated neurocognitive disorder (HAND), we investigated RNA expression using machine learning tools.

Design: Brain-derived host RNA transcript and miRNA expression was examined from persons with or without HAND using bioinformatics platforms.

Methods: By combining next generation sequencing, droplet digital (dd)PCR quantitation of HIV-1 genomes, with bioinformatics and statistical tools, we investigated differential RNA expression in frontal cortex from persons without HIV (HIV[-]), with HIV without brain disease (HIV[+]), with HIV-associated neurocognitive disorder (HAND), or HAND with encephalitis (HIVE).

View Article and Find Full Text PDF

Activation of the cGAS-sting Pathway Mediated by Nanocomplexes for Tumor Therapy.

Curr Pharm Des

January 2025

School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.

cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway is an natural immune response signaling pathway in the human body that is essential for sensing abnormal DNA aggregation in the cell. When the cGAS protein senses abnormal or damaged DNA, it forms a second messenger called cyclic dinucleotide (cGAMP). The cycled dinucleotide will activate the downstream STING protein, thereby inducing the expression of inflammatory cytokines such as type I interferon, which binds to receptors on its own cell membrane and ultimately initiates multiple immune response pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!