Nitrous oxide (N2O) is a gaseous drug with abuse potential. Despite its common clinical use, little is known about whether N2O administration activates the HPA axis and/or the sympathetic adrenomedullary system. The goal of this study was to determine whether 60% N2O alters plasma concentrations of corticosterone (CORT), epinephrine (EPI), and norepinephrine (NE) in male Long-Evans rats. A gas-tight swivel assembly in the lid of a gas administration chamber allowed the remote collection of blood samples from an indwelling jugular vein catheter at four time-points: baseline and at 30, 60, and 120 min during a two-hour administration of 60% N2O. Relative to baseline, plasma CORT (n = 9) was significantly elevated at all three time-points during N2O inhalation (mixed model analysis, p = .001) and plasma EPI and NE levels were each significantly elevated (n = 8, p ≤ .001) at the 30 min assessment. EPI then declined and did not differ from baseline at the 60 and 120 min assessments (p > .05) whereas NE remained elevated (120 min, p = .001). Administration of 60% N2O increases circulating CORT, EPI, and NE, supporting N2O as a physiological stressor. An N2O-induced increase in CORT is consistent with the observation that addictive drugs typically activate the HPA axis causing increased plasma levels of glucocorticoids. Allostatic models of drug addiction typically involve stress systems and the possible role of stress hormones in N2O-induced allostatic dysregulation is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310116 | PMC |
http://dx.doi.org/10.1080/10253890.2017.1402175 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
October 2024
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine.
The structures of the title compounds 2-hy-droxy-'-methyl-acetohydrazide, , and 2-hy-droxy--methyl-acetohydrazide, , both CHNO, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hy-droxy-acetohydrazide. In the structure of , the 2-hy-droxy-acetohydrazide core [OH-C-C(=O)-NH-NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to , in the structure of all non-hydrogen atoms lie in the same plane.
View Article and Find Full Text PDFWater Res
November 2024
Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Sulfate radical (SO) advanced oxidation processes (SR-AOPs) are efficient for degrading a broad spectrum of contaminants. This study demonstrates that the existence of environmentally relevant concentrations of nitrite (NO) can lead to the formation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, when heat activated peroxydisulfate (heat/PDS) is applied to address contaminants with dimethylamine moieties, such as tetracyclines. NO effectively competes with tetracyclines for SO at a high second-order reaction rate constant of 8.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China. Electronic address:
Co-composting of livestock manure and selenate is an effective means to produce selenium-rich organic fertilizer. However the effect of selenate on greenhouse gas emission during composting is still unknown. To probe the influences of selenate on greenhouse gas and microbial community changes during swine manure composting.
View Article and Find Full Text PDFGlob Chang Biol
December 2024
School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China.
Reducing water input and promoting water productivity in rice field under alternate wetting and drying irrigation (AWD), instead of continuous flooding (CF), are vital due to increasing irrigation water scarcity. However, it is also important to understand how methane (CH) and nitrous oxide (NO) emissions and global warming potential ( of CH and NO) respond to AWD under the influence of various factors. Here, we conducted a meta-analysis to investigate the impact of AWD on CH and NO emissions and , and its modification by climate conditions, soil properties, and management practices.
View Article and Find Full Text PDFJ Environ Manage
November 2024
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!