A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. | LitMetric

Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception.

J Plant Physiol

Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain. Electronic address:

Published: January 2018

Feeding an increasing global population as well as reducing environmental impact of crops is the challenge for the sustainable intensification of agriculture. Plant-growth-promoting bacteria (PGPB) management could represent a suitable method but elucidation of their action mechanisms is essential for a proper and effective utilization. Furthermore, ethylene is involved in growth and response to environmental stimuli but little is known about the implication of ethylene perception in PGPB activity. The ethylene-insensitive tomato never ripe and its isogenic wild-type cv. Pearson lines inoculated with Bacillus megaterium or Enterobacter sp. C7 strains were grown until mature stage to analyze growth promotion, and bacterial inoculation effects on root proteomic profiles. Enterobacter C7 promoted growth in both plant genotypes, meanwhile Bacillus megaterium PGPB activity was only noticed in wt plants. Moreover, PGPB inoculation affected proteomic profile in a strain- and genotype-dependent manner modifying levels of stress-related and interaction proteins, and showing bacterial inoculation effects on antioxidant content and phosphorus acquisition capacity. Ethylene perception is essential for properly recognition of Bacillus megaterium and growth promotion mediated in part by increased levels of reduced glutathione. In contrast, Enterobacter C7 inoculation improves phosphorus nutrition keeping plants on growth independently of ethylene sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2017.10.008DOI Listing

Publication Analysis

Top Keywords

ethylene perception
12
bacillus megaterium
12
pgpb activity
8
growth promotion
8
bacterial inoculation
8
inoculation effects
8
growth
6
ethylene
5
proteomic analysis
4
analysis reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!