Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study evaluates environmental impacts of an integrated mixed crop-livestock system with a green biorefinery (GBR). System integration included production of feed crops and green biomasses (Sys-I) to meet the demand of a livestock system (Sys-III) and to process green biomasses in a GBR system (Sys-II). Processing of grass-clover to produce feed protein was considered in Sys-II, particularly to substitute the imported soybean meal. Waste generated from the livestock and GBR systems were considered for the conversion to biomethane (Sys-IV). Digestate produced therefrom was assumed to be recirculated back to the farmers' field (Sys-I). A consequential approach of Life Cycle Assessment (LCA) method was used to evaluate the environmental impacts of a combined production of suckler cow calves (SCC) and Pigs, calculated in terms of their live weight (LW). The functional unit (FU) was a basket of two products "1kg-SCC+1kg-Pigs", produced at the farm gate. Results obtained per FU were: 19.6kg CO eq for carbon footprint; 0.11kg PO eq for eutrophication potential, -129MJ eq for non-renewable energy use and -3.9 comparative toxicity units (CTU) for potential freshwater ecotoxicity. Environmental impact, e.g. greenhouse gas (GHG) emission was primarily due to (i) NO emission and diesel consumption within Sys-I, (ii) energy input to Sys-II, III and IV, and (iii) methane emission from Sys-III and Sys-IV. Specifically, integrating GBR with the mixed crop-livestock system contributed 4% of the GHG emissions, whilst its products credited 7% of the total impact. Synergies among the different sub-systems showed positive environmental gains for the selected main products. The main effects of the system integration were in the reductions of GHG emissions, fossil fuel consumption, eutrophication potential and freshwater ecotoxicity, compared to a conventional mixed crop-livestock system, without the biogas conversion facility and the GBR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.11.082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!