Although it has been well established that osteogenic differentiation of bone mesenchymal stem cells (bMSCs) as well as osteoclastic differentiation of macrophages can be manipulated by the nanostructure of biomaterial surfaces, the interactions among the effects of the surface on immune cells and bMSCs remained unknown. Therefore, in this study, the osteogenic behaviors and secretion of osteoclastogenesis-related cytokines of human bMSCs on TiO nanotubular (NT) surfaces in conditioned medium (CM) generated by macrophages cultured on the respective NT surfaces (NT-CM) were analyzed. Although bMSCs showed consistent osteogenic behaviors on the NT5 and NT20 surfaces in both standard culture medium and both types of NT-CM, collagen synthesis and extracellular matrix mineralization were partially impeded on the NT20 surface in NT20-CM and bMSC cytokine secretions on the NT20 surface in NT20-CM elicited remarkable multinuclear giant cell and osteoclast formation compared with that observed on the NT5 surface in NT5-CM. After implantation in vivo, mineralized bone formation was significantly delayed around the NT20 implant compared with the NT5 implant, but both surfaces contributed to good bone formation after 12 weeks. The results obtained in this study advance our understanding of the confounding influence of the implant surface nanostructure, macrophage inflammatory response, and osteogenic differentiation of bMSCs as well as the retro-regulative effects of bMSCs on the osteoclastic differentiation of macrophages, and the culture system based on different NT surfaces and CM generated on the respective surfaces may provide a systematic research model for evaluating the performance of endosseous implants as well as a prospective approach for improving implant osseointegration via immune-regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2017.11.003 | DOI Listing |
Calcif Tissue Int
January 2025
Division of Bone Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.
Tumor-induced osteomalacia (TIO) is a rare acquired paraneoplastic syndrome caused by a mesenchymal tumor secreting a phosphaturic hormone called FGF23. Patients present with bone pain, fragility fractures and muscle weakness. Biochemical results show hypophosphatemia, raised serum alkaline phosphatase and reduced calcitriol.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
Department of Biotechnology, Sinhgad College of Engineering affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India.
Glucocorticoids induced osteoporosis (GIOP) is a global concern without effective therapies. The present study investigated the potential of the umbilical cord-derived mesenchymal stem cells (UCMSCs) and traditional medicine Piper longum L. in the reversal of GIOP.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Bioconvergence, CHA University, 6F, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
While mitochondria are known to be essential for intracellular energy production and overall function, emerging evidence highlights their role in influencing cell behavior through mitochondrial transfer. This phenomenon provides a potential basis for the development of treatment strategies for tissue damage and degeneration. This study aims to evaluate whether mitochondria isolated from osteoblasts can promote osteogenic differentiation in mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFSmall
January 2025
School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
Antibiotic-resistant bacteria often cause lethal infections in both the surficial and deep organs of humans. Failure of antibiotics in resistant infections leads to more effective alternative therapies, like spatiotemporally controllable piezodynamic therapy (PZDT) with deep penetration. Currently, PZDT demands further investigation for improved treatment outcomes and the corresponding therapeutic mechanisms.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Histology and Embryology, Erciyes University, School of Medicine, Kayseri, Türkiye.
Although scaffold materials serve as effective bone substitutes for mandibular reconstruction, their high resorption and biodegradation rates decrease the success of the therapeutic effect. This study aims to explore the bone regenerative potential of bovine-derived osteoid matrix xenografts coupled with cell-free treatments. The study was conducted as a randomized in vivo experiment to repair critical-sized defects in rabbit mandibles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!