We present a multipurpose technology to encapsulate hydrophobic substances in micron-sized emulsion droplets and capsules. The encapsulating agent is a comblike stimuli-responsive copolymer comprising side-chain surfactants attached to a methacrylic acid/ethyl acrylate polyelectrolyte backbone. The composition and structure of the hydrophobic moieties of the side chains are customized to tune the particle morphology and the processing conditions. The technology exploits the synergy of properties provided by the copolymer: interfacial activity, pH responsiveness, and viscoelasticity. A one-pot process produces emulsion gels or capsule dispersions consisting of a hydrophobic liquid core surrounded by a polymer shell. The dispersions resist high ionic strengths and exhibit long-term stability. The versatility of the method is demonstrated by encapsulating various hydrophobic substances covering a broad range of viscosities and polarities-conventional and technical oils, perfumes, and alkyd paints-with a high degree of morphological and rheological control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b02689 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!