Herein, we report the synthesis and biological characterization of the new peptide ψRGDechi as the first step toward novel-targeted theranostics in melanoma. This pseudopeptide is designed from our previously reported RGDechi peptide, known to bind selectively αβ integrin, and differs for a modified amide bond at the main protease cleavage site. This chemical modification drastically reduces the enzymatic degradation in serum, compared to its parental peptide, resulting in an overall magnification of the biological activity on a highly expressing αβ human metastatic melanoma cell line. Selective inhibition of cell adhesion, wound healing, and invasion are demonstrated; near-infrared fluorescent ψRGDechi derivative is able to detect αβ integrin in human melanoma xenografts in a selective fashion. More, molecular docking studies confirm that ψRGDechi recognizes the receptor similarly to RGDechi. All these findings pave the way for the future employment of this novel peptide as promising targeting probe and therapeutic agent in melanoma disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.7b01590 | DOI Listing |
Adv Wound Care (New Rochelle)
January 2025
Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.
Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.
View Article and Find Full Text PDFArch Endocrinol Metab
January 2025
Universidade Estadual Paulista Faculdade de Medicina de Botucatu BotucatuSP Brasil Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Botucatu, SP, Brasil.
Objective: Considering that the αvβ3 integrin plays an important role in tumor metastasis, this study investigated the involvement of these pathways in mediating the triiodothyronine (T3) effects on amphiregulin () expression.
Materials And Methods: We treated MCF-7 cells with T3 (10 nM) for 1 hour in the presence or absence of inhibitors for αvβ3 integrin (RGD peptide), MAPK (PD98059), PI3K (LY294002), and protein synthesis (cycloheximide [CHX]). A control group (C) received no T3 or inhibitors.
Adv Healthc Mater
January 2025
Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Characterized by a cascade of profound changes in nucleus pulposus (NP) cells, extracellular matrix (ECM), and biomechanics, intervertebral disc degeneration is a common multifactorial condition that may lead to various degenerative lumbar disorders. Therapeutic strategies targeting a single factor have shown limited efficacy in treating disc degeneration, and approaches that address multiple pathological ingredients are barely reported. In this study, engineered cell membrane-encapsulated keratin nanoparticles are developed to simultaneously alleviate NP cell senescence and promote ECM remodeling.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence and Istituto Toscano Tumori (ITT), Florence, Italy.
J Am Soc Nephrol
January 2025
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Background: Deficiency of adiponectin and its downstream signaling may contribute to the pathogenesis of kidney injury in type 2 diabetes. Adiponectin activates intracellular signaling via adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2), but the role of AdipoR-mediated signaling in glomerular injury in type 2 diabetes remains unknown.
Methods: The expression of AdipoR1 in the kidneys of people with type 2 diabetes and the expression of podocyte proteins or injury markers in the kidneys of AdipoR1-knockout (AdipoR1-KO) mice and immortalized AdipoR1-deficient human podocytes were investigated by immunohistochemistry and immunoblotting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!