The phenomenon of symmetry breaking-in which the order of symmetry of a system is reduced despite manifest higher-order symmetry in the underlying fundamental laws-is pervasive throughout science and nature, playing a critical role in fields ranging from particle physics and quantum theory to cosmology and general relativity. For the growth of crystals, symmetry breaking is the crucial step required to generate a macroscopic shape that has fewer symmetry elements than the unit cell and/or seed crystal from which it grew. Advances in colloid synthesis have enabled a wide variety of nanocrystal morphologies to be achieved, albeit empirically. Of the various nanoparticle morphologies synthesized, gold nanorods have perhaps been the most intensely studied, thanks largely to their unique morphology-dependent optical properties and exciting application potential. However, despite intense research efforts, an understanding of the mechanism by which a single crystal breaks symmetry and grows anisotropically has remained elusive, with many reports presenting seemingly conflicting data and theories. A fundamental understanding of the symmetry breaking process is needed to provide a rational framework upon which future synthetic approaches can be built. Inspired by recent experimental results and drawing upon the wider literature, we present a mechanism for gold nanorod growth from the moments prior to symmetry breaking to the final product. In particular, we describe the steps by which a cuboctahedral seed particle breaks symmetry and undergoes anisotropic growth to form a nanorod. With an emphasis on the evolving crystal structure, we highlight the key geometrical and chemical drivers behind the symmetry breaking process and factors that govern the formation and growth of nanorods, including control over the crystal width, length, and surface faceting. We propose that symmetry breaking is induced by an initial formation of a new surface structure that is stabilized by the deposition of silver, thus preserving this facet in the embryonic nanorod. These new surfaces initially form stochastically as truncations that remove high-energy edge atoms at the intersection of existing {111} facets and represent the beginnings of a {011}-type surface. Crucially, the finely tuned [HAuCl]:[AgNO] ratio and reduction potential of the system mean that silver deposition can occur on the more atomically open surface but not on the pre-existing lower-index facets. The stabilized surfaces develop into side facets of the nascent nanorod, while the largely unpassivated {111} facets are the predominant site of Au atom deposition. Growth in the width direction is tightly controlled by a self-sustaining cycle of galvanic replacement and silver deposition. It is the [HAuCl]:[AgNO] ratio that directly determines the particle size at which the more open atomic surfaces can be stabilized by silver and the rate of growth in the width direction following symmetry breaking, thus explaining the known aspect ratio control with Ag ion concentration. We describe the evolving surface faceting of the nanorod and the emergence of higher-index facets. Collectively, these observations allow us to identify facet-size and edge-atom effects as a simple fundamental driver of symmetry breaking and the subsequent development of new surfaces in the presence of adsorbates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.7b00313 | DOI Listing |
Mater Horiz
January 2025
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark.
The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.
View Article and Find Full Text PDFNat Commun
January 2025
International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.
Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, INDIA, Kolkata, 700032, INDIA.
The breaking of inversion symmetry combined with spin-orbit coupling, can give rise to intrigu- ing quantum phases and collective excitations. Here, we report systematic temperature dependent Raman scattering and theoretical calculations of phonon modes across the inversion symmetry- breaking structural transitions in a quasi-one-dimensional compound (TaSe4)3I. Our investigation revealed the emergence of three additional Raman-active modes in Raman spectra of the low- temperature (LT) non-centrosymmetric (NC) structure of the material.
View Article and Find Full Text PDFCommun Mater
January 2025
Physik-Institut, Universität Zürich, Zürich, Switzerland.
The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!