Two types of thin-film electrochemical devices (electrolyte-gated transistors and electrochemical light-emitting cells) are demonstrated using area-controllable ionogel patches generated by transfer-stamping. For the successful transfer of ionogel patches on various target substrates, thermoreversible gelation by phase-separated polymer crystals within the ionogel is essential because it allows the gel to form a conformal contact with the acceptor substrate, thereby lowering the overall Gibbs energy of the system upon transfer of the ionogel. This crystallization-mediated stamping provides a much more efficient deposition route for producing thin films of ionically conductive high-capacitance solid ionogel electrolytes. The lateral dimensions of the transferred ionogels range from 1 mm × 1 mm to 40 mm × 40 mm. These ionogel patches are incorporated in organic p-type and inorganic n-type thin-film transistors and electrochemical light-emitting devices. The resulting transistors show sub-1 V device operation with high transconductance currents, and the optoelectronic devices emit orange light through a series of electrochemical redox reactions. These results demonstrate a simple yet versatile route to employ physical ionogels for various solid-state electrochemical device applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b12712DOI Listing

Publication Analysis

Top Keywords

ionogel patches
12
ionogels solid-state
8
electrolyte-gated transistors
8
light-emitting devices
8
transistors electrochemical
8
electrochemical light-emitting
8
transfer ionogel
8
ionogel
6
electrochemical
5
area-controllable stamping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!