Herein we report the synthesis of two complexes of potassium employing strongly nucleophilic carbenes, such as cyclic "(alkyl)(amino)carbene (cAAC) and abnormal N-heterocyclic carbene (aNHC). Both complexes are dimeric in the solid state and the two potassium centers are bridged by trimethylsilylamide. In these complexes, the carbene- - -K interaction is predominantly electrostatic in character, which has been probed thoroughly by NBO and AIM analyses. Indeed, the delocalization energy of the cAAC lone pair calculated from the second-order perturbation theory was only 5.21 kcal mol, supporting a very weak interaction. The solution-state behavior of these molecules, as inferred from NOESY spectra, hints that the weak carbene- - -K interaction is retained in nonpolar solvents, and the bond is not dissociated at least on the NMR time scale. We took advantage of such a weak interaction to develop highly effective ring-opening polymerization catalysts for ε-caprolactone and rac-lactide. The efficacy of these catalysts is prominent from a very high substrate/metal-initiator ratio as well as very low dispersity index of the obtained polymer chains, reflecting significant control over polymerization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b01892DOI Listing

Publication Analysis

Top Keywords

ring-opening polymerization
8
carbene- - -k interaction
8
weak interaction
8
highly active
4
active carbene
4
carbene potassium
4
complexes
4
potassium complexes
4
complexes ring-opening
4
polymerization ε-caprolactone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!