Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor.

Sensors (Basel)

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Korea.

Published: October 2017

Recently, autonomous vehicles, particularly self-driving cars, have received significant attention owing to rapid advancements in sensor and computation technologies. In addition to traffic sign recognition, road lane detection is one of the most important factors used in lane departure warning systems and autonomous vehicles for maintaining the safety of semi-autonomous and fully autonomous systems. Unlike traffic signs, road lanes are easily damaged by both internal and external factors such as road quality, occlusion (traffic on the road), weather conditions, and illumination (shadows from objects such as cars, trees, and buildings). Obtaining clear road lane markings for recognition processing is a difficult challenge. Therefore, we propose a method to overcome various illumination problems, particularly severe shadows, by using fuzzy system and line segment detector algorithms to obtain better results for detecting road lanes by a visible light camera sensor. Experimental results from three open databases, Caltech dataset, Santiago Lanes dataset (SLD), and Road Marking dataset, showed that our method outperformed conventional lane detection methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713467PMC
http://dx.doi.org/10.3390/s17112475DOI Listing

Publication Analysis

Top Keywords

road lane
12
lane detection
12
road
8
fuzzy system
8
visible light
8
light camera
8
camera sensor
8
autonomous vehicles
8
road lanes
8
detection robust
4

Similar Publications

This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation.

View Article and Find Full Text PDF

Although oil and gas (O&G) derived produced waters and drill cuttings are known to contain enhanced levels of naturally occurring radium-228 (Ra) and radium-226 (Ra), most relevant ecological impact assessments have excluded radiological hazards and focus on other important contaminants, such as hydrocarbons and metals. Also, due to restricted access to the delimiting safety zone around operational O&G platforms, the few previous radioecological risk assessment studies have been conducted using seawater samples collected far from the main discharge point and applying default dilution and transfer factors to estimate concentrations of contaminants in biota. In this case study, sediment cores were collected close to a former O&G platform, Northwest Hutton (NWH), that used to be in the UK North Sea (61.

View Article and Find Full Text PDF

The ReAct project: Analysis of data from 23 different laboratories to characterise DNA recovery given two sets of activity level propositions.

Forensic Sci Int Genet

January 2025

Bundeskriminalamt, Wiesbaden, Germany; International Commission on Missing Persons, The Hague, The Netherlands.

The ReAct (Recovery, Activity) project is an ENFSI (European Network of Forensic Science Institutes) supported initiative comprising a large consortium of laboratories. Here, the results from more than 23 laboratories are presented. The primary purpose was to design experiments simulating typical casework circumstances; collect data and to implement Bayesian networks to assess the value (i.

View Article and Find Full Text PDF

Content Validity of a New Soccer (Football) Return-to-Play Test: The RONDO-TEST.

J Funct Morphol Kinesiol

December 2024

Institut Nacional d'Educació Física de Catalunya (INEFC), Partida la Caparrella, 97, E-25192 Lleida, Spain.

Objectives: The aim was to assess the content validity of a new field test on general and soccer-specific motor skills before return to play.

Methods: The RONDO-TEST was assessed by a Delphi panel for its content validity. It included a survey to evaluate 16 items related to the test consisting of four 10 m lines which cross over at their mid-point, resulting in eight 5 m sectors that include locomotor skills (speeding, moving sideways, side cutting, and jumping) and soccer-specific technical skills (dribbling, slalom course, and kicking/passing).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!