Silicon neuroprobes hold great potential for studies of large-scale neural activity and brain computer interfaces, but data on brain response in chronic implants is limited. Here we explored with in vivo cellular imaging the response to multisite silicon probes for neural recordings. We tested a chronic implant for mice consisting of a CMOS-compatible silicon probe rigidly implanted in the cortex under a cranial imaging window. Multiunit recordings of cortical neurons with the implant showed no degradation of electrophysiological signals weeks after implantation (mean spike and noise amplitudes of 186 ± 42 µV and 16 ± 3.2 µV, respectively, n = 5 mice). Two-photon imaging through the cranial window allowed longitudinal monitoring of fluorescently-labeled astrocytes from the second week post implantation for 8 weeks (n = 3 mice). The imaging showed a local increase in astrocyte-related fluorescence that remained stable from the second to the tenth week post implantation. These results demonstrate that, in a standard electrophysiology protocol in mice, rigidly implanted silicon probes can provide good short to medium term chronic recording performance with a limited astrocyte inflammatory response. The precise factors influencing the response to silicon probe implants remain to be elucidated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688150PMC
http://dx.doi.org/10.1038/s41598-017-15121-1DOI Listing

Publication Analysis

Top Keywords

silicon probes
8
silicon probe
8
rigidly implanted
8
week post
8
post implantation
8
silicon
6
vivo characterization
4
characterization electrophysiological
4
electrophysiological astrocytic
4
astrocytic responses
4

Similar Publications

This study assessed the biocompatibility and chemical properties of two bioceramic root canal sealers, EndoSequence BC Sealer (EBC) and Nishika Canal Sealer BG (NBG), using a sealer extrusion model. Eight-week-old male Wistar rats were used. The mesial root canals of the upper first molars were pulpectomized and overfilled with EBC, NBG, or, as reference, epoxy resin-based AH Plus (AHP).

View Article and Find Full Text PDF

Mapping Surface Potential in DNA Aptamer-Neurochemical and Membrane-Ion Interactions on the SOS Substrate Using Terahertz Microscopy.

Biosensors (Basel)

January 2025

Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.

In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer-neurochemical complexes through the terahertz amplitude. Additionally, comparative studies of DNA aptamers in PBS buffer and artificial cerebrospinal fluid (aCSF) were performed by computational structure modeling and terahertz measurements.

View Article and Find Full Text PDF

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

Currently commercial colorimetric paper lateral flow immunoassays exhibit insufficient limit of detection (LOD) and limited clinical sensitivity toward the detection of SARS-CoV-2 antigens, which causes a high false negative rate. To mitigate this issue, a new plasmon-enhanced fluorescence probe was developed for paper lateral flow strips (PLFSs). The probe is made of a sandwich-structured Ag-core@silica@dye@silica-shell nanoparticle in which fluorescent dyes are sandwiched between the plasmonic Ag core and the silica outer shell, and the separation distance between the Ag core and the dye molecules is controlled by the silica space layer.

View Article and Find Full Text PDF

Investigation of Er-Doped BaF Single Crystals for Infrared Emission and Photovoltaic Efficiency Enhancement.

Luminescence

January 2025

Department of Physics, IMN, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain.

Er-doped BaF single crystals were investigated with two primary aims: first, to probe the infrared emissions from the I level (around 1.0 μm) under 1500-nm excitation and, second, to use the crystal to enhance the efficiency of silicon-based solar cells through upconversion mechanism. Upon excitation at 1500 nm, the upconversion emission spectrum of the Er-doped BaF single crystals, recorded in the range of 480-1080 nm, exhibited two well-structured visible bands at 538 and 650 nm, along with a strong near infrared emission at 971 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!