Neuritic plaques and neurofibrillary tangles are crucial morphological criteria for the definite diagnosis of Alzheimer's disease. We evaluated 12 unstained frontal cortex and hippocampus samples from 3 brain donors with Alzheimer's disease and 1 control with hyperspectral Raman microscopy on samples of 30 × 30 µm. Data matrices of 64 × 64 pixels were used to quantify different tissue components including proteins, lipids, water and beta-sheets for imaging at 0.47 µm spatial resolution. Hierarchical cluster analysis was performed to visualize regions with high Raman spectral similarities. The Raman images of proteins, lipids, water and beta-sheets matched with classical brain morphology. Protein content was 2.0 times, the beta-sheet content 5.6 times and Raman broad-band autofluorescence was 2.4 times higher inside the plaques and tangles than in the surrounding tissue. The lipid content was practically equal inside and outside. Broad-band autofluorescence showed some correlation with protein content and a better correlation with beta-sheet content. Hyperspectral Raman imaging combined with hierarchical cluster analysis allows for the identification of neuritic plaques and neurofibrillary tangles in unstained, label-free slices of human Alzheimer's disease brain tissue. It permits simultaneous quantification and distinction of several tissue components such as proteins, lipids, water and beta-sheets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688091PMC
http://dx.doi.org/10.1038/s41598-017-16002-3DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
16
hyperspectral raman
12
neuritic plaques
12
plaques neurofibrillary
12
neurofibrillary tangles
12
proteins lipids
12
lipids water
12
water beta-sheets
12
raman imaging
8
brain tissue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!