Perovskite potassium sodium niobates, KNaNbO, are promising lead-free piezoelectrics. Their dielectric and piezoelectric characteristics peak near x = 0.5, but the reasons for such property enhancement remain unclear. We addressed this uncertainty by analyzing changes in the local and average structures across the x = 0.5 composition, which have been determined using simultaneous Reverse Monte Carlo fitting of neutron and X-ray total-scattering data, potassium EXAFS, and diffuse-scattering patterns in electron diffraction. Within the A-sites, Na cations are found to be strongly off-centered along the polar axis as a result of oversized cube-octahedral cages determined by the larger K ions. These Na displacements promote off-centering of the neighboring Nb ions, so that the Curie temperature and spontaneous polarization remain largely unchanged with increasing x, despite the shrinking octahedral volumes. The enhancement of the properties near x = 0.5 is attributed to an abrupt increase in the magnitude and probability of the short-range ordered octahedral rotations, which resembles the pre-transition behavior. These rotations reduce the bond tension around Na and effectively soften the short Na-O bond along the polar axis - an effect that is proposed to facilitate reorientation of the polarization as external electric field is applied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688101PMC
http://dx.doi.org/10.1038/s41598-017-15937-xDOI Listing

Publication Analysis

Top Keywords

octahedral rotations
8
polar axis
8
coupling emergent
4
emergent octahedral
4
rotations polarization
4
polarization knanbo
4
knanbo ferroelectrics
4
ferroelectrics perovskite
4
perovskite potassium
4
potassium sodium
4

Similar Publications

There is a large gap between the performances indicated by rotating disk electrode (RDE) results in acidic media and the actual performances obtained in membrane-electrode assemblies (MEAs) composed of the same electrocatalysts. It is unclear whether the intrinsic kinetic reactivity of the available surface Pt sites of Pt-based cathode electrocatalysts is similar or different at RDE and in MEA. To address this, we used an operando element-selective time-resolved Pt L-edge quick X-ray absorption fine structure (QXAFS) technique to determine transient response profiles and rate constants, , , and , corresponding to changes in the oxidation states [white line (WL) intensity] and local structures (coordination numbers of Pt-O and Pt-Pt bonds) at Pt sites for nine representative Pt-based cathode electrocatalysts under transient voltage operations, aiming to understand the oxygen reduction reaction (ORR) performance gap between RDE and MEA.

View Article and Find Full Text PDF

Thermally Controlled -site Cation Ordering and Coupled Polarity in Double Perovskite NaLaZrO.

Inorg Chem

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

-site cation ordering in double perovskites is crucially important for their physical properties. In this study, polycrystalline samples of Zr-based double perovskite NaLaZrO were synthesized via high-temperature solid-state reactions, and the influence of the heating temperature and cooling rate on their crystal structures was investigated using synchrotron X-ray diffractometry and optical second harmonic generation. The samples prepared at 1200 °C, followed by slow cooling to room temperature, crystallize in a polar 2 structure, exhibiting partial -site cation ordering, with Na- and La-rich -site layers alternately stacked along the axis.

View Article and Find Full Text PDF

The title compound, {(CHNO)[SnBr]} , is a layered hybrid perovskite crystallizing in the monoclinic space group 2/. The asymmetric unit consists of one HC-O-NH -CH cation (MeHA), one Sn atom located on a twofold rotation axis, and two Br atoms. The Sn atom has a distorted octa-hedral coordination environment formed by the bromido ligands.

View Article and Find Full Text PDF

Reaction of Co(NCS) with 4-methyl-pyridine in water leads to the formation of single crystals of the title compound, [Co(NCS)(CHN)] . The asymmetric unit consists of two crystallographically independent thio-cyanate anions and two crystallographically independent 4-methyl-pyridine coligands in general positions, as well as of two different Co cations, of which one is located on a twofold rotational axis, whereas the second occupies a center of inversion. The methyl H atoms in both 4-methyl-pyridine ligands are disordered and were refined using a split model.

View Article and Find Full Text PDF

The Jahn-Teller (JT) deformation triggers severe structural distortion and large capacity fading in the cathode materials of alkali-ion batteries. Although conventional doping containing over 20 dopant species has been demonstrated to suppress the JT effect, how the short-range and cooperative JT effect are regulated remains an open question. Recently, the new compositionally complex (high entropy) doping has been validated in various oxide cathodes and achieved "zero strain", but the reported "synergistic effect" is largely factual reporting with a limited fundamental understanding of the link between multicomponents and the JT effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!