Prader-Willi syndrome (PWS) is a rare genetic disorder associated with excessive weight gain. Hyperphagia associated with PWS may result in higher energy intake, but alterations in energy expenditure may also contribute to energy imbalance. The purpose of this critical literature review is to determine the presence of alterations in energy expenditure in individuals with PWS. Ten studies that measured total energy expenditure (TEE), resting energy expenditure (REE), sleep energy expenditure (SEE), activity energy expenditure (AEE), and diet induced thermogenesis (DIT) were included in this review. The studies provided evidence that absolute TEE, REE, SEE, and AEE are lower in individuals with PWS than in age-, sex-, and body mass index-matched individuals without the syndrome. Alterations in lean body mass and lower physical activity amounts appear to be responsible for the lower energy expenditure in PWS rather than metabolic differences. Regardless of the underlying mechanism for lower TEE, the estimation of energy requirements with the use of equations derived for the general population would result in weight gain in individuals with PWS. The determination of energy requirements for weight management in individuals with PWS requires a more comprehensive understanding of energy metabolism. Future studies should aim to comprehensively profile all specific components of energy expenditure in individuals with PWS with the use of appropriately matched controls and gold standard methods to measure energy metabolism and body composition. One component of energy expenditure that is yet to be explored in detail in PWS is DIT. A reduced DIT (despite differences in fat free mass), secondary to hormonal dysregulation, may be present in PWS individuals, leading to a reduced overall energy expenditure. Further research exploring DIT in PWS needs to be conducted. Dietary energy recommendations for weight management in PWS have not yet been clearly established.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682993 | PMC |
http://dx.doi.org/10.3945/an.117.016253 | DOI Listing |
EClinicalMedicine
October 2024
Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada.
Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.
View Article and Find Full Text PDFFront Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.
Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.
View Article and Find Full Text PDFBackground: The activation of brown adipose tissue (BAT) is associated with improved metabolic health in humans. We previously identified the mitochondrial protein 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) as a novel regulatory factor that integrates with lipid metabolism and is critical to sustain the long-term activation of BAT, but the precise mechanism and function of Nipsnap1 is unknown.
Objectives: Define how the regulatory factor Nipsnap1 integrates with lipid metabolism.
Unlabelled: Mitochondria are double membrane-bound organelles with pleiotropic roles in the cell, including energy production through aerobic respiration, calcium signaling, metabolism, proliferation, immune signaling, and apoptosis. Dysfunction of mitochondria is associated with numerous physiological consequences and drives various diseases, and is one of twelve biological hallmarks of aging, linked to aging pathology. There are many distinct changes that occur to the mitochondria during aging including changes in mitochondrial morphology, which can be used as a robust and simple readout of mitochondrial quality and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!