WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation.

EMBO J

Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA

Published: January 2018

WASP-family proteins are known to promote assembly of branched actin networks by stimulating the filament-nucleating activity of the Arp2/3 complex. Here, we show that WASP-family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP-family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline-rich sequence that binds profilin-actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline-rich sequences are required to support polymerase activity by (i) bringing polymerization-competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin-actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP-family proteins that create it. Collaboration between WH2 and proline-rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP-family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753033PMC
http://dx.doi.org/10.15252/embj.201797039DOI Listing

Publication Analysis

Top Keywords

wasp-family proteins
24
branched actin
16
actin networks
16
filament elongation
12
wh2 domains
12
actin
10
wh2 proline-rich
8
assembly branched
8
polymerase activity
8
profilin-actin complexes
8

Similar Publications

Inborn errors of immunity (IEI) are a group of diseases in humans that typically present as increased susceptibility to infections, autoimmunity, hyperinflammation, allergy, and in some cases malignancy. Among newly identified genes linked to IEIs include 3 independent reports of 9 individuals from 7 independent kindreds with severe primary immunodeficiency disease (PID) and autoimmunity due to loss-of-function mutations in the gene encoding Hematopoietic protein 1 (HEM1). HEM1 is a hematopoietic cell specific component of the WASp family verprolin homologous (WAVE) regulatory complex (WRC), which acts downstream of multiple immune receptors to stimulate actin nucleation and polymerization of filamentous actin (F-actin).

View Article and Find Full Text PDF

Breast cancer, a prevalent global health concern, has sparked extensive research efforts, particularly focusing on triple negative breast cancer (TNBC), a subtype lacking estrogen receptor (ER), progesterone receptor, and epidermal growth factor receptor. TNBC's aggressive nature and resistance to hormone-based therapies heightens the risk of tumor progression and recurrence. Actin-binding proteins, specifically WAVE3 from the Wiskott-Aldrich syndrome protein (WASP) family, have emerged as major drivers in understanding TNBC biology.

View Article and Find Full Text PDF
Article Synopsis
  • Hematologic cancers are prevalent in both adults and children, but many patients still face poor outcomes, highlighting the need for new treatments.
  • The Wiskott-Aldrich syndrome protein (WASp) plays a crucial role in actin assembly and is primarily found in blood cells; researchers have created a new small molecule, EG-011, that activates its autoinhibited state.
  • Trials show that EG-011 effectively combats various blood cancers like lymphoma and leukemia both in isolated tests and in living models, showcasing its unique mechanism related to actin polymerization.
View Article and Find Full Text PDF
Article Synopsis
  • The Arp2/3 complex is crucial for forming branched actin filaments that support cellular processes like endocytosis and cell movement.
  • Researchers found that specific mutations in the budding yeast Arp2/3 complex affect how effectively a WASP family protein (Las17) binds to the complex, which is necessary for optimal activation of actin networks.
  • While disrupted binding sites still allow for some actin formation, yeast cells exhibit impaired functions, like decreased membrane internalization, indicating that both binding sites are important for creating effective actin structures, despite some residual activity in the complex.
View Article and Find Full Text PDF

Endometriosis, a common gynecological disorder characterized by the growth of endometrial gland and stroma outside the uterus, causes several symptoms such as dysmenorrhea, hypermenorrhea, and chronic abdominal pain. 17β estradiol (E2) stimulates the growth of endometriotic lesions. Although estetrol (E4), produced by human fetal liver, is also a natural estrogen, it may have the opposite effects on endometriotic cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!